Электроотрицательность гелия. Способы получение гелия. Получение гелия из минералов

Как многие знают, самым распространенным и легким элементом на земле является водород , гелий же в нашем мире занимает второе место! Гелий — второй элемент периодической таблицы Менделеева является инертным одноатомным газом, не имеющим ни цвета, ни вкуса, ни запаха. Обладает самой низкой температурой кипения из всех веществ (-269 о С). Имеет 8 изотопов. Каждый из них уникален по своим свойствам.

История открытия

Первооткрывателем гелия по праву можно считать французского астронома, директора обсерватории в Медоне, Пьера Жюль Сезар Жансена. В 1868 году, при исследовании солнца, а именно хромосферы, астрономом была запечатлена линия ярко-желтого цвета, которую изначально и ошибочно отнесли к спектру натрия . Но, спустя несколько лет, в 1871 году Пьер, совместно с английским астрономом Джозефом Локьером, установили, что линия, найденная Жансеном, не принадлежит ни одному из известных на тот момент химических элементов. Название гелий получил, от слова «гелиос», что в переводе с греческого означает — солнце! В первую очередь, ученые предположили, что найденный элемент является металлом, но в наши дни, с уверенностью можно сказать — это было ложное предположение

Как многие знают, абсолютно все газы можно привести в жидкое состояние, но для этого, конечно, потребуются определенные условия. Сжиженный открыли только в 1908 году. Нидерландский физик Хейке Камерлинг-Оннес понижал давление газа с протеканием через дроссель, предварительно охладив гелий.

Твердый гелий, был получен только через 20 лет в 1926 году. Ученик Камерлинг-Оннеса, смог добиться получения кристаллов газа, увеличив давление гелия выше 35 атмосфер и охладив газ до предельно низкой температуры.

Начнем с того, что гелий не может вступать в химические реакции вовсе, а так же не имеет степеней окисления. Гелий – одноатомный газ, и имеет всего лишь один электронный уровень (оболочку), являясь крайне устойчивым газом, так как имеет полностью заполненный электронами первый уровень, что говорит о сильном воздействии ядра на электроны. Атомы гелия, не то, что не реагируют с другими веществами, более того, они не соединяются даже друг с другом.

Жидкий гелий имеет ряд абсолютно уникальных свойств. В 30 годах 20-го века, при еще меньших температурах было замечено крайне странное и невероятное явление – когда гелий охлаждается до температуры всего на 2 градуса превышающей абсолютный ноль, происходит его неожиданная трансформация. Поверхность жидкости становится абсолютно спокойной и гладкой, ни единого пузырька, ни малейшего бурления жидкости. Жидкий гелий превращается в сверхтекучую жидкость. Такой гелий может забраться по стенкам и «сбежать» из сосуда, в котором он хранится, это происходит из за нулевой вязкости сжиженного газа. Он может стать фонтаном, обладающим нулевым трением, а значит, такой фонтан может течь бесконечно. Несмотря на все теории, ученые установили, что сжиженный гелий это непросто жидкость. Например, начиная с 2He, оказалось, что сжиженный газ состоит из двух взаимопроникающих жидкостей: нормальной (вязкой) и сверхтекучей (нулевая вязкость) компоненты. Сверхтекучая компонента является идеальной и обладает нулевым трением, при протекании в любых сосудах и капиллярах.

Что же касается твердого гелия, то на данный момент, ученые проводят многочисленные опыты и эксперименты. Твердый 4He обладает квантовым эффектом, таким как кристаллизационная волна. Этот эффект основан на колебании границы раздела фаз в системе – «кристалл – жидкость». Достаточно немного качнуть такой гелий, и граница фаз между жидкостью и твердым веществом будет схожа с границей двух жидкостей!

Использование гелия в промышленности

В основном, гелий необходим для получения крайне низких температур, а так же в металлургии для выплавки чистых металлов. Так же 2He – это не только один из лучших теплоносителей, но и хороший пропеллент (Е939) в пищевой индустрии.

С помощью гелия можно определять местонахождение разломов в толще Земли, так как он выделяется при распаде радиоактивных элементов, которыми насыщена земная кора. Концентрация гелия на выходе из трещины, в 50 -100 раз больше, чем нормальная.

Более того, гелием наполняют воздушные суда, такие как дирижабли. Гелий намного легче чем воздух, поэтому подъемная сила таких судов очень высока. Да, водород легче, чем гелий. Так почему бы не использовать его? Водород – это горючий элемент, и заправлять им дирижабли крайне опасно.

Опасность

Любое превышение концентрации газа может быть опасным для здоровья человека. Вдыхание воздуха с высокой концентрацией гелия может вызвать потерю сознания, сильные, рвоту и даже смерть. Смерть наступает в результате кислородного голодания, связанного с тем что в легкие не попадает

Гелий: как его добывают и где применяют

Гелий – это инертный газ без цвета и запаха, химический элемент, внесенный в периодическую систему. Первое упоминание о гелии относят к 1868 году. Тогда исследователи Пьер Жюль Жансен и Джозеф Норман Локьер наблюдали за солнечным затмением и проводили спектроскопию лучей. При разделении солнечных лучшей на элементы разного цвета они заметили светло-желтый элемент, до этого неизвестный физикам. Позже выяснилось, что это и был гелий.

Несмотря на то, что гелий занимает второе место по количеству во вселенной после водорода, на Земле он встречается нечасто. Только в 1895 году ученым из Шотландии удалось выделить это вещество из клевеита – природного минерала.

Месторождения гелия

Сегодня гелий добывают в недрах земли, выделяя его из природного газа. В России его добычей занимается завод по обработке газа в Оренбурге. Природный газ, с которым работают на заводе, содержит всего 0,055% гелия, что считается очень небольшим показателем. Газы, богатые гелием – это газы, в которых его содержание составляет не менее 0,5%. Если природный газ содержит от 0,1 до 0,5% гелия, его называют родовым гелиевым месторождением.

В общей сложности на Земле насчитывается более 40 миллиардов кубометров гелия. Больше всего богаты на гелий Китай, Россия, США, Алжир, Катар. Ежегодно по всему миру добывается около 175 миллионов кубических метров гелия. Российские месторождения добывают всего 5 млн кубометров. В Сибири и на Дальнем Востоке обнаружены богатые месторождения этого газа, однако на сегодня его добыча там не налажена.

Как получают гелий из природного газа

Процесс получения гелия состоит из двух этапов. Вначале природный газ охлаждают, после чего происходит конденсация и выделяется гелиевый концентрат – вещество, которое на 80% состоит из гелия. После этого полученное вещество очищают от примесей (водорода, аргона, метана, азота). Для очищения используются различные методы.

Где применяется гелий

Этот инертный газ отлично проводит электричество и тепло, поэтому широко применяется во многих сферах – в ракетостроении, авиации, атомной промышленности, медицине. Он намного легче воздуха, поэтому его используют также в воздухоплавании и подводных погружениях.

Этот газ входит в состав дыхательных смесей – он не токсичен, его можно вдыхать без вреда для здоровья.

Совсем недавно ученые открыли еще одну область применения гелия – в атомной индустрии. Гелий используется как теплопроводник для атомных реакторов. В металлургии этот газ используют как защитное вещество при сварочных работах.

Запасы гелия на Земле

По оценкам экспертов, чтобы удовлетворить такие большие потребности в гелии, к 2030 году ежегодно будет требоваться 238-312 миллионов кубометров. К этому времени объем добычи возрастет всего лишь до 213-238 млн. кубических метров за год, поэтому ожидается некоторая нехватка гелия в производственных сферах. Выход из этой ситуации один – повышать количество добываемого гелия. В России уже сегодня строятся новые предприятия по его добыче – преимущественно в регионах Сибири.


(первый электрон)

Гелий — второй порядковый элемент периодической системы химических элементов Д. И. Менделеева, с атомным номером 2. Расположен в главной подгруппе восьмой группы, первом периоде периодической системы. Возглавляет группу инертных газов в периодической таблице. Обозначается символом He (Helium ). Простое вещество гелий (CAS-номер: 7440-59-7) — инертный одноатомный газ без цвета, вкуса и запаха.

Гелий — один из наиболее распространённых элементов во Вселенной , он занимает второе место после водорода . Также гелий является вторым по лёгкости (после водорода) химическим элементом.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция).

История открытия Гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия . Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D 3 , так как она была очень близко расположена к Фраунгоферовым линиям D 1 (589,59 нм) и D 2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (ήλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной строне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D 3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию . Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома .

График зависимости теплоёмкости жидкого гелия от температуры

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (Эффект Джоуля — Томсона), после того как как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 , которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 . В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I , а ниже её — гелий-II .

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II , которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:
… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10 −2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия

От ἥλιος — «Солнце» (Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Среднее содержание гелия в земном веществе — 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий : клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг.

Определение Гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства Гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 для 4 He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Свойства в газовой фазе


Спектральные линии гелия

При нормальных условиях гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Плотность 0,17847 кг/м³. Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока (с р = 5,23 кДж/(кг·К) при н.у., для сравнения — 14,23 кДж/(кг·К) для Н 2).

Символ элемента, выполненный из газоразрядных трубок, наполненных гелием

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с большей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 (15 °C), 3,2 (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха , и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4 He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия, однако интерпретация этого явления не до конца понятна.

Химические свойства Гелия

Гелий — наименее химически активный элемент восьмой группы (Инертные газы) таблицы Менделеева . Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He 2 , фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)).

Известно химическое соединение гелия LiHe. (возможно, имелось ввиду соединение LiHe 7)

Изотопы Гелия

Природный гелий состоит из двух стабильных изотопов : 4 He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3 He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение Гелия

Промышленность — химический элемент гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его CO 2 и углеводородов. В результате получается смесь гелия, неона и водорода. Сырой гелий (70-90 % по объёму гелий) очищают от водорода (4-5 %) с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением сырого гелий кипящим под вакуумом N 2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N 2 . Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (от 0,15 до 1 %), что позволит намного снизить его себестоимость.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и СТГ-40 светло-серого цвета объёмом 10, 25 и 40 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:
— в металлургии в качестве защитного инертного газа для выплавки чистых металлов
— в пищевой промышленности зарегистрирован в качестве пищевой добавки E939 , в качестве пропеллента и упаковочного газа
— используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
— для наполнения воздухоплавающих судов (дирижабли)
— в дыхательных смесях для глубоководного погружения (Баллон для дайвинга)
— для наполнения воздушных шариков и оболочек метеорологических зондов
— для заполнения газоразрядных трубок
— в качестве теплоносителя в некоторых типах ядерных реакторов
— в качестве носителя в газовой хроматографии
— для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
— как компонент рабочего тела в гелий-неоновых лазерах
— нуклид 3 He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
— нуклид 3 He является перспективным топливом для термоядерной энергетики
— для изменения тембра голосовых связок (эффект повышенной тональности голоса) за счет различия плотности обычной воздушной смеси и гелия (аналогично гексафториду серы)

Биологическая роль гелия

Гелий не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотическое воздействие гелия (и неона) при нормальном давлении в опытах не регистрируется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)

В 2000 г. цены частных компаний на газообразный гелий находились в пределах 1,5 — 1,8 $/м³
В 2009 году цены на газообразный гелий находились в пределах 1.800-2.500 рублей за 6 м³ (40-литровый баллон) (Санкт-Петербург).

Дополнительная информация по гелию

Гелий-3 — лёгкий, нерадиоактивный изотоп гелия.
Эффект Померанчука — аномальный характер плавления (или затвердевания) лёгкого изотопа гелия 3 He

Гелий, Helium, Не (2)
В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч.- гелиос, солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах «земных» продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия.

Bсследуя урановые минералы химик Гиллебранд, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов — ортогелий и парагелий; один из них дает желтую линию спектра, другой зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.

ГЕЛИЙ, He (лат. Helium, от греч. helios — Солнце, т. к. впервые был обнаружен в солнечном спектре * а. helium; н. Helium; ф. helium; и. helio), — элемент VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 2, атомная масса 4,0026. Природный гелий состоит из двух стабильных изотопов 3 He и 4 He. Открыт в 1868 французким астрономом Ж. Жансеном и английским астрономом Дж. Н. Локьером при спектроскопическом исследовании солнечных протуберанцев. На гелий впервые выделен в 1895 английским физиком У. Рамзаем из радиоактивного минерала клевеита.

Свойства гелия

При нормальных условиях гелий — газ без цвета и запаха. 0,178 кг/м 3 , t кипения — 268,93° С. Гелий - единственный элемент, который в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. В 1938 советский физик П. Л. Капица открыл у 4 He сверхтекучесть — способность течь без вязкости. Наименьшее давление, необходимое для перевода жидкого гелия в твёрдый, 2,5 МПа, при этом t плавления — 272,1°С. (при 0°С) 2,1.10 -2 Вт/м.К. Молекула гелия состоит из одного атома, её радиус от 0,085 (нетинный) до 0,133 нм (Ван-дер-Ваальсов) (0,85-1,33 Е), В 1 литре воды при 20°С растворяется около 8,8 мл гелия Устойчивые химические соединения гелия не получены.

Гелий в природе

По распространённости во Вселенной гелий занимает 2-е место после . На Земле гелия мало: в 1 м 3 воздуха содержится 5,24 см 3 гелия, среднее содержание в 3.10 -7 %. В пластовых литосферы существуют 3 генетические составляющие гелия — радиогенный, первозданный и атмосферный гелий. Радиогенный гелий образуется повсеместно при радиоактивных превращениях тяжёлых элементов и различных ядерных реакциях, первозданный — поступает в литосферу как из глубинных пород , окклюдировавших первозданный гелий и сохранивших его со времени формирования планеты, так и из космоса вместе с космической пылью, метеоритами и т.п. Атмосферный гелий попадает в осадки из воздуха, при процессах седиментогенеза, а также с инфильтрующимися поверхностными водами.

Величина отношения 3 He/ 4 He в радиогенном гелии составляет п.10 -8 , в гелии мантии (смеси первозданного и радиогенного) (3±1).10 -5 , в космическом гелии 10 -3 -10 -4 , в атмосферном воздухе 1,4.10 -6 . В земном гелии абсолютно преобладает изотоп 4 He. Основное количество 4 He образовалось при а-распаде естественных радиоактивных элементов (радиоизотопы , актиноурана и ). Незначительные источники образования 4 He и 3 He в литосфере — ядерные реакции (нейтронное расщепление лития и т.п.), распад трития и др. На древних стабильных участках земной коры преобладает радиогенный 4 He 3 He/ 4 He = = (2±1).10 -8 . Для тектонически нарушенной земной коры (зон рифтов, глубинных разломов, эруптивных аппаратов, с тектономагматической или сейсмической активностью и т.п.) характерно повышенное количество 3 He 3 He/ 4 He = n.10 -5 . Для остальных геологических структур отношение 3 He/ 4 He в пластовых газах и флюидах изменяется в пределах 10 -8 -10 -7 . Различие в величинах изотопно-гелиевых отношений 3 He/ 4 He в мантийном и коровом гелии является индикатором современной связи глубинных флюидов с мантией. В силу лёгкости, инертности и высокой проницаемости гелия большинство породообразующих его не удерживает, и гелий мигрирует по трещинно-поровым пространствам пород, растворяясь в заполняющих их флюидах, иногда далеко отрываясь от основных зон образования.

Гелий — обязательная примесь во всех газах, образующих самостоятельные скопления в земной коре или выходящих наружу в виде естественных газовых струй. Обычно гелий составляет ничтожную примесь к другим газам; в редких случаях его количество доходит до нескольких % (по объёму); максимальные концентрации гелия выявлены в подземных газовых скоплениях (8-10%), газах урановых (10-13%) и водорастворённых газах (18-20%).

Получение гелия

В промышленности гелий получают из гелийсодержащих газов методом глубокого охлаждения (до -190°С), незначительное количество — при работе воздухоразделительных установок. Основные газовые компоненты при этом конденсируются (вымораживаются), а оставшийся гелиевый концентрат очищается от водорода и . Разрабатываются также диффузные методы извлечения гелия.

Транспортировка и хранение гелия — в высокогерметизированных ёмкостях. Гелий 1-2-го сортов обычно перевозят в стальных баллонах разной ёмкости, чаще до 40 л, под давлением до 15 МПа. Хранилища гелия устраивают также в подземных соляных камерах, а гелий-сырец (около 60% He и 40% N 2) хранят в выработанных подземных газовых структурах. На дальние расстояния гелий поставляется в сжатом и жидком виде с помощью специально оборудованного транспорта, а также газопроводом (например, в США).

Использование гелия

Применение гелия основано на таких его уникальных свойствах, как полная инертность (сварка в атмосфере гелия, производство сверхчистых и полупроводниковых материалов, добавка в дыхательные смеси и пр.), высокая проницаемость (течеискатели в аппаратах высокого и низкого давлений). гелий — единственный из химических элементов, который позволяет получать сверхнизкие температуры, необходимые для всех типов сверхпроводящих систем и установок (криоэнергетика). Жидкий гелий — хладоагент при проведении научных исследований.

18 августа 1868 года французский учёный Пьер Жансен во время полного солнечного затмения в индийском городе Гунтур впервые исследовал хромосферу Солнца. Спектроскопия солнечных протуберанцев наряду с линиями водорода - синей, зелено-голубой и красной - выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Независимо от него английский астроном Норман Локьер обнаружил в спектре неизвестную жёлтую линию с длиной волны 587,56 нм, и обозначил её как D3. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, пришел к мнению, что эта ярко-жёлтая линия не принадлежит ни одному из ранее известных химических элементов и предложил дать новому элементу название "гелий" (от греч. hlioz - "солнце").

Нахождение в природе, получение:

Гелий занимает второе место по распространённости во Вселенной после водорода - около 23% по массе. Однако на Земле гелий редок, образуясь в результате альфа-распада тяжёлых элементов. В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона). Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·10 14 м 3 . Гелионосные природные газы содержат как правило до 2% гелия по объёму (редко 8-16%). Среднее содержание гелия в земном веществе - 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8-3,5 л/кг, а в торианите оно достигает 10,5 л/кг. Природный гелий состоит из двух стабильных изотопов: 4 He и 3 He. Известны ещё шесть искусственных радиоактивных изотопов гелия.
В промышленности гелий получают из гелийсодержащих природных газов.

Физические свойства:

Простое вещество гелий - нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ, Tкип = 4,2K (наименьшая среди всех простых веществ). При атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах.
При нормальных условиях гелий ведёт себя практически как идеальный газ. Плотность 0,17847 кг/м 3 . Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода. Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Гелий менее растворим в воде, чем любой другой известный газ (при 20°C около 8,8 мл/л). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.
При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке.

Химические свойства:

Гелий - наименее химически активный элемент восьмой группы таблицы Менделеева. В газовой фазе он может образовывать (при действии электрического разряда или ультрафиолетового излучения) так называемые эксимерные молекулы, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние: двухатомные молекулы He 2 , фторид HeF, хлорид HeCl. Время жизни таких частиц очень мало, обычно составляет считанные наносекунды. В отличие от многих других газов гелий не образует клатратов, так как маленькие атомы гелия "ускользают" из слишком больших для них пустот в структуре воды.

Применение:

Уникальные свойства гелия широко используются:
- в металлургии в качестве защитного инертного газа для выплавки чистых металлов;
- в пищевой промышленности зарегистрирован в качестве пищевой добавки E939, в качестве пропеллента и упаковочного газа;
- в качестве хладагента для получения сверхнизких температур;
- для наполнения воздухоплавающих судов (дирижабли), воздушных шаров и оболочек метеорологических зондов;
- в качестве теплоносителя в некоторых типах ядерных реакторов;
- в качестве носителя в газовой хроматографии;
- для поиска утечек в трубопроводах и котлах;
- для заполнения газоразрядных трубок;
- как компонент рабочего тела в гелий-неоновых лазерах;
- в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов;
- в дыхательных смесях для глубоководного погружения;
- для изменения тембра голосовых связок (эффект повышенной тональности голоса) за счет различия плотности обычной воздушной смеси и гелия, и т.д;
- нуклид 3 He является перспективным топливом для термоядерной энергетики.