Химическое равновесие. Смещение равновесия. Обратимые и необратимые реакции. Химическое равновесие Химия обратимые и необратимые реакции

Темы кодификатора : обратимые и необратимые реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.

По возможности протекания обратной реакции химические реакции делят на обратимые и необратимые.

Обратимые химические реакции – это реакции, продукты которых при данных условиях могут взаимодействовать друг с другом.

Например , синтез аммиака — реакция обратимая:

N 2 + 3H 2 = 2NH 3

Процесс протекает при высокой температуре, под давлением и в присутствии катализатора (железо). Такие процессы, как правило, обратимые.

Необратимые реакции – это реакции, продукты которых при данных условиях взаимодействовать друг с другом не могут.

Например , реакции горения или реакции, протекающие со взрывом — чаще всего, необратимые. Горение углерода протекает необратимо :

C + O 2 = CO 2

Более подробно про классификацию химических реакций можно прочитать .

Вероятность взаимодействия продуктов зависит от условий проведения процесса.

Так, если система открытая , т.е. обменивается с окружающей средой и веществом, и энергией, то химические реакции, в которых, например, образуются газы, будут необратимыми.

Например , при прокаливании твердого гидрокарбоната натрия:

2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O

выделяется газообразный углекислый газ и улетучиватся из зоны проведения реакции. Следовательно, такая реакция будет необратимой при данных условиях.

Если же рассмотреть замкнутую систему , которая не может обмениваться веществом с окружающей средой (например, закрытый ящик, в котором происходит реакция), то углекислый газ не сможет улететь из зоны проведения реакции, и будет взаимодействовать с водой и карбонатом натрия, то реакция будет обратимой при данных условиях:

2NaHCO 3 ⇔ Na 2 CO 3 + CO 2 + H 2 O

Рассмотрим обратимые реакции . Пусть обратимая реакция протекает по схеме:

aA + bB ⇔ cC + dD

Скорость прямой реакции по закону действующих масс определяется выражением:

v 1 =k 1 ·C A a ·C B b

Скорость обратной реакции:

v 2 =k 2 ·C С с ·C D d

Здесь k 1 и k 2 – константы скорости прямой и обратной реакции соответственно, С A , C B , C C , C D – концентрации веществ А, В, С и D соответственно.

Если в начальный момент реакции в системе нет веществ C и D, то сталкиваются и взаимодействуют преимущественно частицы A и B, и протекает преимущественно прямая реакция.

Постепенно концентрация частиц C и D также начнет повышаться, следовательно, скорость обратной реакции будет увеличиваться. В какой-то момент скорость прямой реакции станет равна скорости обратной реакции . Это состояние и называют химическим равновесием .

Таким образом, химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакции равны .

Так как скорости прямой и обратной реакции равны, скорость образования реагентов равна скорости их расходования, и текущие концентрации веществ не изменяются . Такие концентрации называют равновесными .

Обратите внимание, при равновесии протекает и прямая, и обратная реакции , то есть реагенты взаимодействуют друг с другом, но и продукты взаимодействуют друг с другом с такой же скоростью. При этом внешние факторы могут воздействовать и смещать химическое равновесие в ту или иную сторону. Поэтому химическое равновесие называют подвижным , или динамическим .

Исследования в области подвижного равновесия начались еще в XIX веке. В трудах Анри Ле-Шателье были заложены основы теории, которые позже обобщил ученый Карл Браун. Принцип подвижного равновесия, или принцип Ле-Шателье-Брауна, гласит:

Если на систему, находящуюся в состоянии равновесия, воздействовать внешним фактором, который изменяет какое-либо из условий равновесия, то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Иными словами: при внешнем воздействии на систему равновесие сместится так, чтобы компенсировать это внешнее воздействие.

Этот принцип, что очень важно, работает для любых равновесных явлений (не только химических реакций). Однако мы сейчас рассмотрим его применительно к химическим взаимодействиям. В случае химических реакций внешнее воздействие приводит к изменению равновесных концентраций веществ.

На химические реакции в состоянии равновесия могут воздействовать три основных фактора – температура, давление и концентрации реагентов или продуктов .

1. Как известно, химические реакции сопровождаются тепловым эффектом. Если прямая реакция идет с выделением теплоты (экзотермическая, или +Q), то обратная — с поглощением теплоты (эндотермическая, или -Q), и наоборот. Если повышать температуру в системе, равновесие сместится так, чтобы это повышение компенсировать. Логично, что при экзотермической реакции повышение температуры компенсировать не получится. Таким образом, при повышении температуры равновесие в системе смещается в сторону поглощения теплоты, т.е. в сторону эндотермических реакций (-Q); при понижении температуры — в сторону экзотермической реакции (+Q).

2. В случае равновесных реакций, когда хотя бы одно из веществ находится в газовой фазе, на равновесие также существенно влияет изменение давления в системе. При повышении давления химическая система пытается компенсировать это воздействие, и увеличивает скорость реакции, в которой количество газообразных веществ уменьшается. При понижении давления система увеличивает скорость реакции, в которой образуется больше молекул газообразных веществ. Таким образом: при увеличении давления равновесие смещается в сторону уменьшения числа молекул газов, при уменьшении давления — в сторону увеличения числа молекул газов .

Обратите внимание! На системы, где число молекул газов-реагентов и продуктов одинаково, давление не оказывает воздействие! Также изменение давления практически не влияет на равновесие в растворах, т.е. на реакции, где газов нет.

3. Также на равновесие в химических системах влияет изменение концентрации реагирующих веществ и продуктов. При повышении концентрации реагентов система пытается их израсходовать, и увеличивает скорость прямой реакции. При понижении концентрации реагентов система пытается их наработать, и увеличивается скорость обратной реакции. При повышении концентрации продуктов система пытается их также израсходовать, и увеличивает скорость обратной реакции. При понижении концентрации продуктов химическая система пувеличивает скорость их образования, т.е. скорость прямой реакции.

Если в химической системе увеличивается скорость прямой реакции вправо , в сторону образования продуктов и расходования реагентов . Если увеличивается скорость обратной реакции , мы говорим, что равновесие сместилось влево , в сторону расходования продуктов и увеличения концентрации реагентов .

Например , в реакции синтеза аммиака:

N 2 + 3H 2 = 2NH 3 + Q

повышение давления приводит к увеличению скорости реакции, в которой образуется меньшее число молекул газов, т.е. прямой реакции (число молекул газов-реагентов равно 4, число молекул газов в продуктах равно 2). При повышении давления равновесие смещается вправо, в сторону продуктов. При повышении температуры равновесие сместится в сторну эндотермической реакции , т.е. влево, в сторону реагентов. Увеличение концентрации азота или водорода сместит равновесие в сторону их расходования, т.е. вправо, в сторону продуктов.

Катализатор не влияет на равновесие, т.к. ускоряет и прямую, и обратную реакции.

Одной из важнейших характеристик химической реакции является глубина (степень) превращения, показывающая, насколько исходные вещества превращаются в продукты реакции. Чем она больше, тем экономичнее можно проводить процесс. Глубина превращения, помимо других факторов, зависит от обратимости реакции.

Обратимые реакции, в отличие от необратимых , протекают не до конца: ни одно из реагирующих веществ не расходуется полностью. Одновременно идет взаимодействие продуктов реакции с образованием исходных веществ.

Рассмотрим примеры:

1) в замкнутый сосуд при определенной температуре введены равные объемы газообразного йода и водорода. Если столкновения молекул этих веществ происходят с нужной ориентацией и достаточной энергией, то химические связи могут перестроиться с образованием промежуточного соединения (активированный комплекс, см. п.1.3.1). Дальнейшая перестройка связей может привести к распаду промежуточного соединения на две молекулы йодистого водорода. Уравнение реакции:

H 2 + I 2 ® 2HI

Но молекулы йодистого водорода также будут беспорядочно сталкиваться с молекулами водорода, йода и между собой. При столкновении молекул HI ничто не помешает образоваться промежуточному соединению, которое затем может разложиться на йод и водород. Этот процесс выражается уравнением:

2HI ® H 2 + I 2

Таким образом, в этой системе одновременно будут протекать две реакции - образование йодистого водорода и его разложение. Их можно выразить одним общим уравнением

H 2 + I 2 « 2HI

Обратимость процесса показывает знак «.

Реакция, направленная в данном случае в сторону образования йодистого водорода, называется прямой, а противоположная - обратной.

2) если смешать два моль диоксида серы с одним моль кислорода, создать в системе условия, благоприятствующие протеканию реакции, и по истечении времени провести анализ газовой смеси, то результаты покажут, что в системе будут присутствовать как SO 3 – продукт реакции, так и исходные вещества – SO 2 и O 2 . Если в те же условия в качестве исходного вещества поместить оксид серы (+6), то можно будет обнаружить, что часть его разложится на кислород и оксид серы (+4), причем конечное соотношение между количествами всех трех веществ будет такое же, как и в том случае, когда исходили из смеси диоксида серы и кислорода.

Таким образом, взаимодействие диоксида серы с кислородом также является одним из примеров обратимой химической реакции и выражается уравнением

2SO 2 + O 2 « 2SO 3

3) взаимодействие железа с соляной кислотой протекает согласно уравнению:

Fe + 2HCL ® FeCL 2 + H 2

При достаточном количестве соляной кислоты реакция закончится, когда

все железо израсходуется. Кроме того, если попытаться провести эту реакцию в обратном направлении – пропускать водород через раствор хлорида железа, то металлического железа и соляной кислоты не получится – эта реакция не может идти в обратном направлении. Таким образом, взаимодействие железа с соляной кислотой – необратимая реакция.

Однако, следует иметь ввиду, что теоретически любой необратимый процесс можно представить протекающим в определенных условиях обратимо, т.е. в принципе все реакции можно считать обратимыми. Но очень часто одна из реакций явно преобладает. Это бывает в тех случаях, когда продукты взаимодействия удаляются из сферы реакции: выпадает осадок, выделяется газ, при ионообменных реакциях образуются практически недиссоциирующие продукты; или же когда за счет явного избытка исходных веществ противоположный процесс практически подавляется. Таким образом, естественное или искусственное исключение возможности протекания обратной реакции позволяет довести процесс практически до конца.

Примерами таких реакций могут служить взаимодействие хлорида натрия с нитратом серебра в растворе

NaCL + AgNO 3 ® AgCl¯ + NaNO 3 ,

бромида меди с аммиаком

CuBr 2 + 4NH 3 ® Br 2 ,

нейтрализация хлороводородной кислоты раствором едкого натра

HCl + NaOH ® NaCl + H 2 O.

Это все примеры лишь практически необратимых процессов, так как и хлорид серебра несколько растворим, и комплексный катион 2+ не абсолютно устойчив, и вода диссоциирует, хотя и в крайне незначительной степени.

Состояние равновесия характерно для обратимых химических реакций.

  • Обратимая реакция — химическая реакция, которая при одних и тех же условиях может идти в прямом и в обратном направлениях.
  • Необратимой называется реакция, которая идет практически до конца в одном направлении. Условия необратимости реакции – образование осадка, газа или слабого электролита. Например:BaCl 2 + H 2 SO 4 = BaSO 4 + 2HClK 2 S + 2HCl = 2KCl + H 2 SHCl + NaOH = NaCl + H 2 O.
  • Химическое равновесие — состояние системы, в котором скорость прямой реакции равна скорости обратной реакции.

Концентрации всех веществ в состоянии равновесия (равновесные концентрации) постоянны. Химическое равновесие имеет динамический характер. Это значит, что и прямая и обратная реакции при равновесии не прекращаются. Смещение равновесия в нужном направлении достигается изменением условий реакции.

Принцип Ле-Шателье — внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов

Химическое равновесие

Химические реакции, протекающие в одном направлении, называют необратимыми .

Большинство химических процессов являются обратимыми . Это значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).

Например:

а) реакция

$CaCO_3{→}↖{t}CaO+CO_2$

в открытой системе необратима;

б) эта же реакция

$CaCO_3⇄CaO+CO_2$

в замкнутой системе обратима.

Рассмотрим более подробно процессы, протекающие при обратимых реакциях, например, для условной реакции:

На основании закона действующих масс скорость прямой реакции

${υ}↖{→}=k_{1}·C_{A}^{α}·C_{B}^{β}$

Так как со временем концентрации веществ $А$ и $В$ уменьшаются, то и скорость прямой реакции тоже уменьшается.

Появление продуктов реакции означает возможность обратной реакции, причем со временем концентрации веществ $С$ и $D$ увеличиваются, а значит, увеличивается и скорость обратной реакции:

${υ}↖{→}=k_{2}·C_{C}^{γ}·C_{D}^{δ}$

Рано или поздно будет достигнуто состояние, при котором скорости прямой и обратной реакций станут равными

${υ}↖{→}={υ}↖{←}$

Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием.

При этом концентрации реагирующих веществ и продуктов реакции остаются без изменения. Их называют равновесными концентрациями . На макроуровне кажется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы продолжают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным и динамическим .

Константа равновесия

Обозначим равновесные концентрации веществ $[A], [B], [C], [D]$.

Тогда так как ${υ}↖{→}={υ}↖{←}, k_{1}·[A]^{α}·[B]^{β}=k_{2}·[C]^{γ}·[D]^{δ}$, откуда

${[C]^{γ}·[D]^{δ}}/{[A]^{α}·[B]^{β}}={k_1}/{k_2}=K_{равн.}$

где $γ, δ, α, β$ — показатели степеней, равные коэффициентам в обратимой реакции; $K_{равн.}$ — константа химического равновесия.

Полученное выражение количественно описывает состояние равновесия и представляет собой математическое выражение закона действующих масс для равновесных систем.

При неизменной температуре константа равновесия — величина постоянная для данной обратимой реакции. Она показывает соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Константы равновесия рассчитывают из опытных данных, определяя равновесные концентрации исходных веществ и продуктов реакции при определенной темпера туре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. Если получают $K_{равн.} >> 1$, это означает, что при равновесии $[C]^{γ}·[D]^{δ} >> [A]^{α}·[B]^{β}$, т. е. концентрации продуктов реакции преобладают над концентрациями исходных веществ, а выход продуктов реакции большой.

При $K_{равн.}

$CH_3COOC_2H_5+H_2O⇄CH_3COOH+C_2H_5OH$

константа равновесия

$K_{равн.}={·}/{·}$

при $20°С$ имеет значение $0.28$ (т.е. меньше $1$). Это означает, что значительная часть эфира не гидролизовалась.

В случае гетерогенных реакций в выражение константы равновесия входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

константа равновесия выражается так:

$K_{равн.}={^2}/{}$

Значение константы равновесия зависит от природы реагирующих веществ и темпера туры.

От присутствия катализатора константа не зависит, по скольку он изменяет энергию активации и прямой, и обратной реакции на одну и ту же величину. Катализатор может лишь ускорить наступление равновесия, не влияя на значение константы равновесия.

Смещение равновесия под действием различных факторов

Состояние равновесия сохраняется сколь угодно долго при неизменных внешних условиях: температуре, концентрации исходных веществ, давлении (если в реакции участвуют или образуются газы).

Изменяя эти условия, можно перевести систему из одного равновесного состояния в другое, отвечающее новым условиям. Такой переход называют смещением или сдвигом равновесия .

Рассмотрим разные способы смещения равновесия на примере реакции взаимодействия азота и водорода с образованием аммиака:

$N_2+3H_2⇄2HN_3+Q$

$K_{равн.}={^2}/{·^3}$

Влияние изменения концентрации веществ

При добавлении в реакционную смесь азота $N_2$ и водорода $Н_2$ увеличивается концентрация этих газов, а значит, увеличивается скорость прямой реакции. Равновесие смещается вправо, в сторону продукта реакции, т.е. в сторону аммиака $NH_3$.

Этот же вывод можно сделать, анализируя выражение для константы равновесия. При увеличении концентрации азота и водорода знаменатель увеличивается, а так как $K_{равн.}$ — величина постоянная, должен увеличиваться числитель. Таким образом, в реакционной смеси увеличится количество продукта реакции $NH_3$.

Увеличение же концентрации продукта реакции аммиака $NH_3$ приведет к смещению равновесия влево, в сторону образования исходных веществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления

Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ находится в газообразном состоянии. При увеличении давления уменьшается объем газов, а значит, увеличивается их концентрация.

Предположим, что давление в замкнутой системе повысили, например, в $2$ раза. Это значит, что концентрации всех газообразных веществ ($N_2, H_2, NH_3$) в рассматриваемой нами реакции возрастут в $2$ раза. В этом случае числитель в выражении для $K_{равн.}$ увеличится в 4 раза, а знаменатель — в $16$ раз, т.е. равновесие нарушится. Для его восстановления должна увеличиться концентрация аммиака и должны уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Изменение давления практически не сказывается на объеме жидких и твердых тел, т.е. не изменяет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления.

Влияние изменения температуры

При повышении температуры, как вы знаете, скорости всех реакций (экзо- и эндотермических) увеличиваются. Причем повышение температуры больше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических.

Таким образом, скорость обратной реакции (в нашем примере эндотермической) увеличивается сильнее, чем скорость прямой. Равновесие сместится в сторону процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье (1884 г.):

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в ту сторону, которая ослабляет данное воздействие.

Сделаем выводы:

  • при увеличении концентрации реагирующих веществ химическое равновесие системы смещается в сторону образования продуктов реакции;
  • при увеличении концентрации продуктов реакции химическое равновесие системы смещается в сторону образования исходных веществ;
  • при увеличении давления химическое равновесие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;
  • при повышении температуры химическое равновесие системы смещается в сторону эндотермической реакции;
  • при понижении температуры - в сторону экзотермического процесса.

Принцип Ле Шателье применим не только к химическим реакциям, но и ко многим другим процессам: испарению, конденсации, плавлению, кристаллизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и расчеты, вытекающие из закона действующих масс, дают возможность находить такие условия для проведения химических процессов, которые обеспечивают максимальный выход желаемого вещества.

Обратимыми в химической кинетике называют такие реакции, которые одновременно и независимо протекают в двух направлениях - прямом и обратном, но с различными скоростями. Для обратимых реакций характерно, что через некоторое время после их начала скорости прямой и обратной реакций становятся равными и наступает состояние химического равновесия.

Все химические реакции обратимы, но при определенных условиях некоторые из них могут протекать только в одном направлении до практически полного исчезновения исходных продуктов. Такие реакции называют необратимыми . Обычно необратимыми бывают реакции, в которых хотя бы один продукт реакции выводится из области реакции (в случае реакции в растворах - выпадает в осадок или выделяется в виде газа), или реакции, которые сопровождаются большим положительным тепловым эффектом. В случае ионных реакций, реакция является практически необратимой, если в результате нее образуется очень малорастворимое или малодиссоциированное вещество.

Рассмотренное здесь понятие обратимости реакции не совпадает с понятием термодинамической обратимости. Обратимая в кинетическом смысле реакция в термодинамическом смысле может протекать необратимо. Для того чтобы реакцию можно было назвать обратимой в термодинамическом смысле, скорость прямого процесса должна бесконечно мало отличаться от скорости обратного процесса и, следовательно, процесс в целом должен протекать бесконечно медленно.

В идеальных газовых смесях и в идеальных жидких растворах скорости простых (одностадийных) реакций подчиняются закону действующих масс . Скорость химической реакции (1.1) описывается уравнением (1.2), а в случае прямой реакции может быть, представлено в виде:

где - константа скорости прямой реакции.

Подобно этому, скорость обратной реакции:

При равновесии , следовательно:

Это уравнение выражает закон действующих масс для химического равновесия в идеальных системах; К - к о н с т а н т а р а в н о в е с и я.

Константа реакции позволяет найти равновесный состав реакционной смеси при данных условиях.

Закон действующих масс для скоростей реакций можно пояснить следующим образом.

Чтобы произошел акт реакции, необходимо столкновение молекул исходных веществ, т.е. молекулы должны сблизиться друг с другом на расстояние порядка атомных размеров. Вероятность найти в некотором малом объеме в данный момент l молекул вещества L , m молекул вещества M и т.д. пропорциональна ..... , следовательно, число столкновений в единице объема за единицу времени пропорционально этой величине; отсюда вытекает уравнение (1.4).