Интересные статьи по физике. Физика список научных статей. Почему физики не любят эту тему

Если вы считаете физику скучным и ненужным предметом, то глубоко заблуждаетесь. Наша занимательная физика расскажет, почему птица, сидящая на проводе линии электропередач, не гибнет от удара током, а человек, попавший в зыбучие пески, не может в них утонуть. Вы узнаете, действительно ли в природе не существует двух одинаковых снежинок и был ли Эйнштейн в школе двоечником.

10 занимательных фактов из мира физики

Сейчас мы ответим на вопросы, которые волнуют многих людей.

Зачем машинист поезда сдает назад перед тем, как тронуться?

Всему виной сила трения покоя, под воздействием которой находятся стоящие без движения вагоны поезда. Если паровоз просто поедет вперед, он может не сдвинуть состав с места. Поэтому он слегка отталкивает их назад, сводя к нулю силу трения покоя, а затем придает им ускорение, но уже в другом направлении.

Существуют ли одинаковые снежинки?

Большинство источников утверждает: в природе не существует одинаковых снежинок, поскольку на их формирование влияет сразу несколько факторов: влажность и температура воздуха, а также траектория полета снега. Однако занимательная физика утверждает: создать две снежинки одинаковой конфигурации можно.

Это экспериментально подтвердил исследователь Карл Либбрехт. Создав в лаборатории абсолютно идентичные условия, он получил два внешне совершенно одинаковых снежных кристалла. Правда, следует отметить: кристаллическая решетка у них все-таки была разной.

Где в Солнечной системе находятся самые большие запасы воды?

Никогда не догадаетесь! Самым объемным хранилищем водных ресурсов нашей системы является Солнце. Вода там находится в виде пара. Его наибольшая концентрация отмечена в местах, которые мы называем «пятнами на Солнце». Ученые даже высчитали: в этих районах температура на полторы тысячи градусов ниже, чем на остальных участках нашей горячей звезды.

Какое изобретение Пифагора было создано для борьбы с алкоголизмом?

Согласно легенде, Пифагор, дабы ограничить употребление вина, сделал кружку, которую можно было наполнить хмельным напитком только до определенной метки. Стоило превысить норму хоть на каплю, и все содержимое кружки вытекало наружу. В основе этого изобретения лежит действие закона о сообщающихся сосудах. Изогнутый канал в центре кружки не позволяет ее наполнять до краев, «избавляя» емкость от всего содержимого в случае, когда уровень жидкости находится выше изгиба канала.

Можно ли превратить воду из проводника в диэлектрик?

Занимательная физика утверждает: можно. Проводниками тока являются не сами молекулы воды, а содержащиеся в ней соли, точнее их ионы. Если их удалить, жидкость потеряет способность проводить электрический ток и станет изолятором. Другими словами, дистиллированная вода является диэлектриком.

Как выжить в падающем лифте?

Многие считают: нужно подпрыгнуть в момент удара кабины о землю. Однако данное мнение неверно, поскольку предугадать, когда произойдет приземление, невозможно. Поэтому занимательная физика дает другой совет: лягте спиной на пол лифта, стараясь максимально увеличить площадь соприкосновения с ним. В этом случае сила удара будет направлена не на один участок тела, а равномерно распределится по всей поверхности — это значительно увеличит ваши шансы на выживание.

Почему птица, сидящая на проводе высокого напряжения, не гибнет от удара током?

Тела пернатых плохо проводят электрический ток. Прикасаясь лапами к проводу, птица создает параллельное соединение, но поскольку она является не самым лучшим проводником, заряженные частицы движутся не через нее, а по кабельным жилам. Но стоит птахе соприкоснуться с заземленным предметом, и она умрет.

Горы находятся к источнику тепла ближе равнин, но на их вершинах гораздо холоднее. Почему?

Этот феномен имеет очень простое объяснение. Прозрачная атмосфера беспрепятственно пропускает солнечные лучи, не поглощая их энергию. Зато почва отлично впитывает тепло. Именно от нее потом и прогревается воздух. Причем чем выше его плотность, тем лучше он удерживает получаемую от земли тепловую энергию. Но высоко в горах атмосфера становится разреженной, а потому и тепла в ней «задерживается» меньше.

Могут ли засосать зыбучие пески?

В фильмах нередко встречаются сцены, где люди «тонут» в зыбучих песках. В реальной жизни — утверждает занимательная физика — подобное невозможно. Выбраться самостоятельно из песчаного болота у вас не получится, ведь чтобы вытащить только одну ногу, придется приложить столько усилий, сколько тратится на подъем легкового автомобиля средней массы. Но и утонуть вы тоже не сможете, поскольку имеете дело с неньютоновской жидкостью.

Спасатели советуют в таких случаях не делать резких движений, лечь спиной вниз, раскинуть руки в стороны и ждать помощи.

Существует ли в природе ничто, смотрите в видео:

Удивительные случаи из жизни известных физиков

Выдающиеся ученые в большинстве своем фанатики своего дела, способные ради науки на все. Так, например, Исаак Ньютон, пытаясь объяснить механизм восприятия света человеческим глазом, не побоялся поставить опыт на себе. Он ввел в глаз тонкий, вырезанный из слоновой кости зонд, одновременно надавив на тыльную часть глазного яблока. В результате ученый увидел перед собой радужные круги и доказал таким образом: видимый нами мир — не что иное, как результат давления света на сетчатку.

Русский физик Василий Петров, живший в начале XIX века и занимавшийся изучением электричества, срезал на своих пальцах верхний слой кожи, чтобы повысить их чувствительность. В то время еще не существовало амперметров и вольтметров, позволявших измерять силу и мощность тока, и ученому приходилось делать это наощупь.

Репортер спросил А. Эйнштейна, записывает ли он свои великие мысли, и если записывает, то куда — в блокнот, записную книжку или специальную картотеку. Эйнштейн посмотрел на объемистый блокнот репортера и сказал: «Милый мой! Настоящие мысли приходят так редко в голову, что их нетрудно и запомнить».

А вот француз Жан-Антуан Нолле предпочел поставить эксперимент на других, Проводя в середине XVIII века эксперимент по вычислению скорости передачи электрического тока, он соединил 200 монахов металлическими проводами и пропустил по ним напряжение. Все участники эксперимента дернулись практически одновременно, и Нолле сделал вывод: ток бежит по проводам ну о-о-очень быстро.

Историю о том, что великий Эйнштейн был в детские годы двоечником, знает практически каждый школьник. Однако на самом деле Альберт учился очень хорошо, а его знания по математике были гораздо глубже, чем того требовала школьная программа.

Когда юный талант попытался поступить в высшую политехническую школу, он набрал высший балл по профильным предметам — математике и физике, но по остальным дисциплинам у него оказался небольшой недобор. На этом основании ему было отказано в приеме. На следующий год Альберт показал блестящие результаты по всем предметам, и в возрасте 17 лет стал студентом.


Забирай себе, расскажи друзьям!

Читайте также на нашем сайте:

Показать еще

Другие статьи посвящены вопросам, которые лежат внутри физики. Что такое масса, что гласит закон Ома, как работает ускоритель – это внутренние вопросы физики. Но как только мы задаем вопрос о физике в целом или о взаимодействии физики с остальным миром, нам приходится выходить за ее пределы. Чтобы посмотреть на нее снаружи, чтобы увидеть ее именно «в целом». И сейчас мы это сделаем.

Как устроена и работает физика

Представьте себе, что ваша цель – строить мосты. Что нужно делать? Добывать железную руду, выплавлять сталь, изготавливать гвозди, валить лес, пилить бревна, забивать сваи, класть настил и так далее. Учиться делать расчеты мостов, причем учиться самим и учить других – и считать, и строить. Неплохо обменяться опытом с другими строителями мостов, можно начать издавать журнал «Через реку» или газету «Наша свая». Важно вот что – это процесс, и на каждом шаге мы можем сказать, что именно сделать; гвоздь можно пощупать, на забитую сваю можно сесть и поудить рыбку. Результаты расчета мостов можно сравнить и проверить, построить макет моста и испытать его. Кроме того, в ходе всей этой деятельности возникает навык, умение, технология строительства и специальный язык описания мостов. Строители употребляют свои, понятные только им термины – консоль, кессон, эпюра и т.д.

Примерно так работает и физика. Те, кто ею занимаются, создают ускорители, микроскопы, телескопы и множество других приборов, пишут и решают уравнения, которые описывают связь различных параметров нашего мира (например, связь давления, температуры и скорости ветра в атмосфере). Как и строители мостов, физики создают свой язык и систему обучения будущих физиков. Накапливается опыт решения задач, возникает технология познания.

Все это не падает с дерева само, как мифическое яблоко. Приборы дорого стоят и не всегда хорошо работают, не все удается понять, не все уравнения удается решить, а часто неясно, как их записать, не все ученики хорошо учатся и т.д. Но в итоге понимание мира улучшается – т.е. сегодня мы знаем больше, чем вчера. А поскольку мы знаем из книг, что позавчера знали еще меньше, то делаем вывод – что завтра будем знать еще больше.

Это и есть физика – познанный мир, процесс познания мира, процесс создания технологии познания, описание мира на специальном «физическом языке». Этот язык частично пересекается с обычным языком. Слова «вес», «скорость», «объем» и т.п. есть и в физическом языке, и в обычном. Многие слова существуют только в физическом языке (экситон, гравитационная волна, тензор и т.д.). Слова обычного языка и слова физического языка можно различить: вы можете любому человеку объяснить – так, что он скажет «понял» – что такое вес и скорость, но не удастся объяснить почти никому, что такое «тензор». Кстати, профессиональные языки пересекаются: например, слово «тензор» имеется и в языке строителей мостов.

Как физика связана с обществом

Физика, равно как и строительство мостов, связана с окружающим миром. Первая связь – быть физиком (как и строителем) приятно. Человек выжил потому, что узнавал новое и делал новое. У мамонтов была теплее шерсть, саблезубые тигры лучше прыгали, но в финал вышел двуногий. Поэтому в человеке заложены – как приспособительный признак, как поддержка правильного способа действий, улучшающего выживание – радость узнавания и радость творчества. Так же, как и радость любви или дружбы.

Вторая связь между физикой и обществом – быть физиком (как и стороителем мостов) престижно. Общество уважает тех, кто делает полезное для него. Уважение проявляется в зарплате, в чинах и орденах, восхищении подруг и друзей. Степень этого уважения и его формы на разных этапах развития общества могут быть, конечно, разными. И они зависят от общего состояния данного общества – в стране, которая ведет много войн, уважают военных, в стране, которая развивает науку – ученых, в стране, которая строит – строителей.

Все, что написано выше, относится не только к физике, но и к науке вообще – при том, что хотя биология и химия имеют много своих особенностей, но сам научный метод у них такой же, как в физике.

Откуда берется псевдонаука

Человек стремится к получению удовольствий и не стремится – если это само по себе не доставляет ему удовольствия – работать. Поэтому вполне естественно, что рядом с физикой, в которой для получения удовольствия от познания истины и признания обществом надо много работать, существует некоторая другая область деятельности, называемая, если говорить вежливо, «паранаукой» или «псевдонаукой».

Иногда говорят «лженаука», но это выражение неточно – ложью принято называть осознанный и целенаправленный обман, а среди деятелей псевдонауки довольно много искренне заблуждающихся людей. Мы будем в основном говорить о псевдофизике, хотя в последнее время очень популярны, например, псевдоистория и псевдомедицина. В соответствии с перечисленными выше свойствами физики, псевдофизика бывает нескольких типов.

Тип 1 – рассчитанный в первую очередь на получение денег и почета от государства. Традиционная тема – «сверхоружие». Например, сбивание ракет противника «плазменными сгустками». Подобные идеи успешно использовались для выкачивания денег из бюджета и в советское время, использовались они и по ту сторону океана. Например, применение телепатии для связи с подводными лодками. Правда, система независимой экспертизы и меньшая коррумпированность мешают развиваться этому виду псевдонауки в других странах.

Тип 2 – рассчитанный в основном на удовлетворение собственных амбиций. Традиционные темы – решение наиболее сложных, фундаментальных и глобальных проблем. Доказательство теоремы Ферма, трисекция угла и квадратура круга, вечный двигатель и двигатель внутреннего сгорания на воде, выяснение природы гравитации, построение «теории всего» и т.д. В отличие от работ типа 1, некоторые из этих работ не стоят почти ничего, разве что денег на публикацию.

В целом псевдонаука базируется на двух психологических особенностях людей – стремлении получить что-то (деньги, почет), не прилагая усилий или узнать что-то, также не прилагая усилий («теория всего»). Люди особенно охотно верят во всякие чудеса (НЛО, мгновенные исцеления, чудо-оружие) в период неудач – или личных, или общественных. Когда сложность стоящих перед человеком или обществом задач оказывается выше обычной и многие люди чувствуют себя плохо. Человек в такой ситуации обращается либо к религии (как правило, к ее внешней атрибутике), либо к псевдонауке, либо к мистике. Например, сегодня по степени интереса к мистике Россия занимает одно из первых мест в мире, далеко обогнав живущие нормальной жизнью западные общества.

Есть ли вред от псевдонауки

Особого вреда, впрочем, непосредственно от веры в НЛО и растения, которые чувствуют на расстоянии, что их собрались сорвать, нет. Хуже другое – человек, приучившийся все воспринимать некритически, отучившийся думать своей головой, становится легкой добычей всяческих жуликов. И тех, которые обещают сделать несметные деньги прямо из воздуха, и тех, которые обещают построить завтра рай и решить все проблемы, и тех, которые берутся за тридцать часов научить его всему – хоть иностранному языку, хоть карате, хоть менеджменту.

Непосредственный вред приносит псевдонаука, пожалуй, только в одном случае – когда это псевдомедицина. Тех, кого лечили знахари, колдуны и потомственные ворожеи, обычно уже не удается спасти врачам. Иногда говорят, что знахари и колдуны излечивают путем внушения, гипноза и т.д. Это возможно, но, во-первых, это не доказано, а, во-вторых, внушением обычно достигается кратковременное улучшение, а болезнь идет своим чередом и приводит к закономерному итогу.

Как отличить науку и псевдонауку?

Или, хотя бы, физику и псевдофизику? Вспомним основные черты физики (да и науки вообще), перечисленные выше.

Первое. Физика создает знание о мире, увеличивающееся со временем. Причем не в виде отдельных откровений, а в виде системы связанных утверждений, причем достоверность каждого является следствием и причиной достоверности других. Любая физическая работа развивает какие-то результаты ранее выполненных работ (или используя, или оспаривая). Не могут игнорироваться результаты, полученные ранее в этой же области.

Второе. Физика позволяет делать «вещи» (например, строить мосты – через изучение свойств материалов и разработку новых). Поэтому достоверность современной физики мы проверяем каждый день по сто раз – без нее не было бы радио и телевидения, без нее не ездил бы автомобиль и метро, без нее не работал бы ни сотовый телефон, ни утюг.

Физика накапливает навык, технологию, аппарат познания, строит свой язык, в котором реализован этот опыт, и систему образования – и для тех, кто будет работать в физике и для тех, кто не будет.

Псевдонаука, удовлетворяющая амбиции ее создателей и тягу людей к простому «объяснению» всего на свете, отличается от науки во всех этих пунктах. Она не делает ничего из этого списка.

Причем в одном аспекте она подражает науке. Что такое «наука» для человека? Прежде всего – это много непонятных слов, некоторые из которых (голография, протон, электрон, магнитное поле, вакуум) часто повторяются в газетах. Кроме того, наука – это чины: академик, член-корреспондент, вице-президент и так далее. Поэтому псевдонаука употребляет много «научных слов», причем совершенно не к месту, и обычно ходит увешанная от шеи до колен званиями. Нынче каждый десяток честных сумасшедших и пяток нормальных жуликов, собравшись вместе, объявляют себя академией.

Почему физики не любят эту тему

Люди, которые хотят разобраться в вопросе и понять, существуют ли «солнечно-земные связи» или это просто некорректная обработка данных, обращаются к физикам с вопросами, а физики обычно уклоняются от ответов. На чем и расцветает пресса, публикующая миллионными тиражами фотографии «души, покидающей тело» (на снимке душа немного похожа на привидение – мультяшного Каспера, только полупрозрачного). Попробуем разобраться в психологии физиков, которые в нарушение традиций своей науки уклоняются от ясного ответа и, опустив глаза, бормочут что-то вроде «а может быть, там что-то и есть».

Первая и главная причина такого поведения – физику гораздо интереснее исследовать природу, чем иметь дело с сумасшедшими, жуликами и одураченными ими людьми.

Вторая причина – если человек безнадежно болен, то (в российской культуре, но не в западной) принято говорить ему неправду и, тем самым, утешать. Если людям плохо и они обращаются к вере в отворот, приворот и сильнейших колдунов в третьем поколении, то как-то нехорошо у них это отнимать.

Третья причина. Нежелание идти на конфликт из-за «ерунды». Ты ему скажешь, что мыши не испускают в момент гибели гравитационных сигналов или что дыр в ауре нет просто потому, что нет ауры, а он начнет обвинять тебя в преследовании и подавлении ростков нового знания?

Четвертая причина. Нежелание прослыть ретроградом, цензором, цербером, деспотом и т.д. Физики помнят советские времена, когда ни одно слово не могло быть опубликовано без разрешения – и поэтому не хотят даже отдаленно быть похожими на цензоров.

Пятая причина – нечистая совесть. Передний край науки углубляется в природу, как горнопроходческий комбайн. Длина тоннелей растет, общество отрывается от науки, а зазор заполняют шаманы. И это происходит не только в России, но и в других странах. Может быть, ученые должны были бы больше заниматься популяризацией науки и образовательной деятельностью? Тогда и шаманизма стало бы поменьше.

Шестая и последняя причина – а вдруг там действительно что-то есть? Рассмотрим эту ситуацию подробнее.

А вдруг там действительно что-то есть

Конечно, когда начинаются рассказы о левитирующих лягушках, все становится ясно. Но в физике часто бывает, что данные новых измерений «не лезут» в старую теорию. Вопрос в том, в какую именно теорию и насколько не лезут. Если они не лезут в теорию относительности, которая многократно подтверждена экспериментально (достаточно сказать, что без нее не было бы телевидения и радиолокации), то говорить не о чем. Если же речь идет о необычных магнитных свойствах или об аномально низком сопротивлении образца, изготовленного из окислов меди и лантана, то это странно и надо бы разобраться тщательно и перемерить семь раз. И те, кто разобрались (а не прошли мимо), открыли высокотемпературную сверхпроводимость. А информацию о веществе, вдвое более твердом, чем алмаз, надо перепроверять не 7, а 77 раз, поскольку это, как нам кажется, противоречит другим, надежно установленным вещам.

Согласитесь, что информация о том, что в вас влюбился сосед или соседка по парте, удивит вас меньше, чем информация о том, что в вас влюбился Чак Норрис или Шарон Стоун. Такую информацию вы будете проверять гораздо тщательнее. Как уже говорилось, физика – это не список откровений, а система знаний, в которой каждое утверждение связано с другими и с практикой.

Второе важное свойство – это управляемость эффекта. Если во дворе мяукнула кошка, а у меня зашкалил вольтметр, то это случайность. Когда это повторилось семь раз, то это повод задуматься. Но вот я спускаюсь во двор, делаю так, чтобы она мяукала и записываю время мявов, другой человек, не знающий, что я это делаю, записывает показания прибора, а третий, не общающийся с нами двумя, анализирует записи, видит совпадения и говорит – да мы сделали открытие! Если с точностью 0,1 сек семь раз совпало то и это, причем ни одного мяу без дерганья стрелки и ни одного дерганья без мяу – это и будет открытие. Заметим, что управляемость эффекта позволяет увеличивать надежность наблюдений и точность измерений. Например, совпадения могут быть не во всех случаях, и все это придется долго и тщательно изучать.

Таким образом, мы видим, что физика – как, впрочем и вся наука – это работа; много-много работы. Удовольствие знать, как устроен мир, даром не дается. И особенно не дается даром то потрясающее ощущение, которое переживает исследователь, только что узнавший о мире что-то новое – то, чего еще не знает никто. Кроме него.

Физика как наука

Имея 20-летний стаж преподавания физики, я столкнулась с тем, что многие учащиеся и не только, закончив курс изучения предмета, так и не могут ответить на вопрос: «что же все таки это за наука-физика?» Весь дальнейший материал, изложенный в этой статье, поможет взглянуть на физику как мировоззренческую, философскую науку.

Что такое физика и каков ее предмет исследования?

А.М. Прохоров: «Физика – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы ее движения».

М.В. Волькенштейн: «Сегодня физика есть наука о фундаментальных структурах материи, о веществе и поле, наука о формах существования материи – о пространстве и времени».

В. Вайскопф: «…Наука пытается открыть фундаментальные законы природы, управляющие миром. Она ищет абсолютное и неизменное в потоке событий».

Л.А. Арцимович: «… Современная физика – это своего рода двуликий Янус. С одной стороны – это наука с горящим взором, которая стремится проникнуть вглубь великих законов материального мира. С другой стороны – это фундамент новой техники, мастерская смелых технических идей, опора обороны и движущая сила непрерывного индустриального прогресса».

Итак, физика – это естественная наука, изучающая фундаментальные законы природы. Вместе с тем, физика служит основой современного научно-технического прогресса.

Какие цели и задачи ставит перед собой физическая наука?

И. Ньютон: «…Главная обязанность натуральной философии – делать заключения из явлений, не измышляя гипотез, и выводить причины из действий до тех пор, пока мы не придем к самой первой причине, конечно, не механической, и не только раскрывать механизм мира, но главным образом разрешать следующие и подобные вопросы. Что находится в местах почти лишенной материи и почему Солнце и планеты тяготеют другу, хотя между ними нет материи? Почему природа не делает ничего понапрасну, и откуда проистека ют весь порядок и красота, которые мы видим в мире?...

И хотя всякий верный шаг на пути этой философии не приводит нас непо средственно к познаванию первой при чины, однако он приближает нас к ней и поэтому должен высоко цениться".

М. П л а н к: "С давних времен, с тех пор, как существует изучение при роды, оно имело перед собой в качестве идеала конечную, высшую задачу: объединить пестрое многообразие физи ческих явлений в единую систему, а если возможно, то в одну-единственную формулу".

Л. Болъцман: "Главная цель естествознания - раскрывать единство сил природы".

Г. Гельмгольц: "Цель указан ных наук - заключается в отыскании законов, благодаря которым отдельные процессы в природе могут быть сведены к общим правилам и могут быть снова выведены из этих последних".

П. Ланжевен: "Физика относи тельно молодая наука. Только в XVIII в. она полностью осознала себя и начала развиваться прочно, на двой ной - экспериментальной и теоретиче ской - основе, стремясь к высокому идеалу, поставленному перед ней еще в давние времена греческими философа ми: освободить человека от страха, дав ему понимание окружающих его сил и сознание того, что он живет в мире, подчиненном законам" .

Таким образом, физика в своей деятельности стремится к созданию такой системы знаний (лучше - теории, еще лучше - одной математической формулы), которая объединит и, разу меется, объяснит по возможности все многообразие наблюдаемых физических явлений.

Каким образом физика решает свои задачи?

И. Ньютон: "Как в математике, так и в натуральной философии иссле дование трудных предметов методом анализа всегда должно предшествовать методу соединения. Такой анализ состо ит в производстве опытов и наблюде ний, извлечении общих заключений из них посредством индукции и недопуще нии иных возражений против заключе ний, кроме полученных из опыта или других достоверных истин. Ибо гипоте зы не должны рассматриваться в экспе риментальной философии. И хотя аргументация на основании опытов и наблюдений посредством индукции не является доказательством общих заключений, однако, это лучший путь аргументации, допускаемый природой вещей, и может считаться тем более сильным, чем общее индукции».

М. В. Ломоносов: "... Ныне ученые люди, а особливо испытатели натуральных вещей, мало взирают на родившиеся в одной голове вымыслы и пустые речи, но более утверждаются на достоверном искусстве. Главнейшая часть натуральной науки, физика, ныне уже только на одном оном свое основание имеет. Мысленные рассуждения произведены бывают из надежных и много раз повторенных опытов. Для того начинающим учиться физике наперед предлагаются ныне обыкновен но нужнейшие физические опыты, купно с рассуждениями, которые из оных непосредственно и почти очевидно следуют" .

А. М. Ампер: "Начать с наблю дений фактов, изменять, по возможно сти, сопутствующие им условия, сопро вождая эту первоначальную работу точными измерениями, чтобы вывести общие законы, основанные всецело на опыте, и в свою очередь вывести из этих законов, независимо от каких-либо предположений о природе сил, вызы вающих эти явления, математические выражения этих сил, т. е. вывести пред ставляющую их формулу, - вот путь, которому следовал Ньютон. ... Этим же путем руководился и я во всех моих исследованиях электродинамических явлений".

М. Б о р н: "Он (физик - Р. Щ.) ставит эксперимент, наблюдает регулярность, формулирует это в математи ческих законах, предсказывает новые явления на основе этих законов, объе диняет различные эмпирические зако ны в связные теории, удовлетворяющие нашу потребность в гармонии и логиче ской красоте, и наконец вновь проверя ет эти теории посредством научного предвидения".

А. Г. Столетов: "... Главными орудиями являются умышленный опыт и математический анализ. Только тогда получается полноправное, истинно научное освещение предмета".

Таким образом, чтобы получаемые в ходе научного исследования физиче ские знания оказались объективными, они должны быть обоснованы теорети ческими рассуждениями и эксперимен тами. Последние в процессе познания занимают особое место.

Какова роль эксперимента в физических исследованиях?

Э. Мах: "Человек накапливает опыт через наблюдение в окружающей среде. Но самым интересным и поучи тельным являются для него те измене ния, на которые он может оказать изве стное влияние своим вмешательством, своими произвольными движениями. К таким изменениям он может отно ситься не только пассивно, но активно приспосабливать их к своим потребно стям; они же имеют для него величай шее экономическое, практическое и умственное значение. На этом основана ценность эксперимента".

А. Эйнштейн: «То, что мы называем физикой, охватывает группу естественных наук, основывающих свои понятия на измерениях...".

М. В. Ломоносов: "Один опыт я ставлю выше, чем тысячу мнений, рожденных только воображением".

Н. Бор: "Под словом "экспери мент" мы можем разуметь единственно только процедуру, о которой мы можем сообщить другим, что нами проделано и что мы узнали".

Л. де Бройль: "Эксперимент, неотъемлемая основа любого прогресса этих наук, эксперимент, из которого мы всегда исходим и к которому мы всегда возвращаемся, - лишь он один может служить нам источником знаний о реальных фактах, которые стоят выше любой теоретической концепции либо предвзятой теории".

П.Л. Капица: "Я думаю, что мы, ученые, можем сказать: теория - это хорошая вещь, но правильный эксперимент остается навсегда".

Действительно, правильно постав ленный эксперимент позволяет обнару живать новые факты и явления, точно измерять весьма важные для всего естествознания фундаментальные кон станты (скорость света, заряд электрона и др.) и определять дальнейшую судьбу любого существующего или только разрабатываемого теоретического пост роения. Важнейшими элементами полу чаемых при этом знаний являются закон и теория.

Каково назначение закона и теории в системе знаний?

Р. Фейнман: "... В явлениях природы есть формы и ритмы, недо ступные глазу созерцателя, но открытые глазу аналитика. Эти формы и ритмы мы называем физическими законами" .

Ю. Вигнер: "Все законы приро ды - это условные утверждения, позво ляющие предсказывать какие-то собы тия в будущем на основе того, что известно в данный момент...".

С. И. Вавилов: "... Опыт, действительно используемый как научный результат... не имеет никакой ценности, если он не связан с некоторыми теоре тическими предпосылками и предполо жениями. Физический опыт ставится только для того, чтобы подтвердить или опровергнуть теорию, причем ре зультат может полностью опровергнуть тот или иной вывод, но никогда не может служить абсолютным утверждением справедливости теории".

Л. де Бройль: "Что касается теории, то ее задача состоит в класси фикации и синтезе полученных резуль татов, расположении их в разумную систему, которая не только позволяет истолковывать известное, но также по мере возможности предвидеть еще не известное".

Л. И. Мандельштам:

"... Всякая физическая теория состоит из двух дополняющих друг друга ча стей...

Первая часть учит, как рациональ ным образом отнести к объектам приро ды определенные величины - большей частью в виде чисел. Вторая часть устанавливает математические соотно шения между этими величинами. Тем самым, ввиду связи этих величин с реальными объектами, формулируются соотношения между этими последними, что и является конечной целью теории.

Без первой части теория иллюзорна, пуста. Без второй вообще нет теории. Только совокупность двух указанных сторон дает физическую теорию".

А. Эйнштейн: "В создании физической теории существеннейшую роль играют фундаментальные идеи. Физические книги полны сложных математических формул. Но началом каждой физической теории являются мысли и идеи, а не формулы. Идеи должны позднее принять математиче скую форму количественной теории, сделать возможным сравнение с экспе риментом".

Л. Больцман: "Можно почти утверждать, что теория, несмотря на ее интеллектуальную миссию, является максимально практической вещью, некоторым образом, квинтэссенцией практики; никакая практическая опыт ность не в состоянии достигнуть точно сти вывода в области оценок или испы таний; но при сокровенности путей теории ее выводы доступны лишь тому, кто владеет ею вполне уверенно".

Р. Фейнман: "Они (физики - Р. Щ.) поняли, что нравится им теория или нет - неважно. Важно другое - дает ли теория предсказания, которые согласуются с экспериментом. Тут не имеет значения, хороша ли теория с философской точки зрения, легка ли для понимания, безупречна ли с точки зрения здравого смысла".

Э. Мах: "Именно эта непрерывная смена эксперимента и дедукции, внося щая постоянно поправки, это тесное соприкосновение их Друг с другом, столь характерное для Галилея в его диалогах и для Ньютона в его оптике, составляют краеугольный камень, причину чрезвычайной плодотворности современного естествознания сравнительно с античным, в котором тонкое наблюдение и сильное мышление суще ствовали порой рядом, почти чуждые друг друга".

Разговор ученых о физической теории и ее взаимосвязи с эксперимен том был достаточно интересным, обсто ятельным и глубоким. Добавим лишь, что, поскольку владение разными мето дами исследования требует сегодня от ученых основательного профессионализ ма, современная физика делится на теоретическую и экспериментальную. И вполне очевидно, что предмет иссле дования у них один - природа, но подходы и методы различны.

Есть физики-теоретики, а есть экспериментаторы...

П. Л. Капица: "Из истории развития физики хорошо известно, что деление физиков на теоретиков и экспе риментаторов произошло совсем недав но. В прежние времена не только Нью тон и Гюйгенс, но и такие теоретики, как Максвелл, обычно сами экспери ментально проверяли свои теоретиче ские выводы и построения".

Но с ростом физических знаний, увеличением и усложнением решаемых научных проблем, а значит и с услож нением техники эксперимента, ученые, в силу своих наклонностей, таланта и образования, занимаются теоретически ми либо экспериментальными исследо ваниями. Так, П. Н. Лебедев, К. Рейт- ген, Э. Резерфорд, П. Л. Капица были экспериментаторами, а Л. Больцман, А. Эйнштейн, Н. Бор, Р. Фейнман, Л. Д. Ландау - теоретиками. В чем же отличие их деятельности?

А.Б. Мигдал: "Физики-экспе риментаторы исследуют соотношения между физическими величинами, или, говоря более торжественно, открывают законы природы, пользуясь экспериментальными установками, то есть, производя измерения физических величин с помощью приборов.

Физики-теоретики изучают природу, пользуясь только бумагой и каранда шом, выводят новые соотношения меж ду наблюдаемыми величинами, опира ясь на найденные ранее эксперимен тально и теоретически законы приро ды".

И далее здесь же ученый подчерки вает, что каждая из этих физических профессий "требует специальных зна ний - знания методов измерения в одном случае и владения математическим аппаратом - в другом... различ ных типов мышления и различных форм интуиции".

Действительно ли физике нужен свой особый язык?

А. Пуанкаре: "Итак, все зако ны выводятся из опыта. Но для выра жения их нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком неопределенен для выражения столь богатых содержанием точных и тонких соотношений".

А. Эйнштейн: "Научные поня тия часто начинаются с понятий, упот ребляемых в обычном языке повседневной жизни, но они развиваются совер шенно иначе. Они преобразуются и теряют двусмысленность, связанную с обычным языком, они приобретают строгость, что позволяет применять их в научном мышлении".

В. Гейзенберг: "... Наш есте ственный язык сформировался в мире обыденного чувственного опыта, тогда как современная наука пользуется уникальной техникой, аппаратурой высочайшей тонкости и сложности и проникает с ее помощью в сферы, недо ступные чувствам".

В. Гейзенберг: "В истории науки часто оказывалось целесообраз ным, а порой необходимым введение в язык дополнительных искусственных слов, удобных для обозначения ранее неизвестных объектов или взаимосвя зей, и этот искусственный язык в об щем и целом удовлетворительно описы вал новооткрытые закономерности природы".

Итак, физика имеет свой специаль ный язык, в котором, впрочем, немало знакомых нам слов, имеющих, как правило, более конкретный смысл. Очевидно также, что язык науки, под обно иностранным языкам, требует своего изучения. Вот почему беседа профессиональных ученых неспециали- сту малопонятна. В свою очередь, язык классической физики перестает работать при описании квантовых явлений. И это естественно, поскольку здесь, по словам того же В. Гейзенберга, "Мы покидаем не только сферу непо средственного чувственного опыта, мы покидаем мир, в котором сформировал ся и для которого предназначен наш обыденный язык". И далее: "Новый язык - это новый способ мышления"

Более того, в поисках четкости и точности выражений зависимостей между величинами физика обращается к математике. Уже Г. Галилей считал, что природу может понять лишь тот, "кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках ПО лабиринту".

Каковы же функции математики в современной физике?

Д ж. К. М а к с в е л л: "Первый этап в развитии физической науки состоит в отыскании системы величин, относительно которых можно предполо жить, что от них зависят явления, рассматриваемые данной наукой. Вто рой ступенью является отыскание мате матической формы соотношений между этими величинами. После этого можно рассматривать эту науку как науку математическую".

Ю. В и г и е р: "В своей повседнев ной работе физик использует математи ку для получения результатов, выте кающих из законов природы, и для проверки применимости условных ут верждений этих законов к наиболее часто встречающимся или интересую щим его конкретным обстоятельствам. Чтобы это было возможным, законы природы должны формулироваться на математическом языке. Однако, получе ние результатов на основе уже сущест вующих теорий - отнюдь не самая важная роль математики в физике. Исполняя эту функцию, математика, или, точнее, прикладная математика, является не столько хозяином положения, сколько средством для достижения определенной цели" .

Ф. Дайсон: «Физик строит свои теории на математическом материале, поскольку математика позволяет ему добиться большего, чем без нее. Искус ство физика состоит в умении подо брать необходимый математический материал и с его помощью построить модель того или иного явления приро ды. Причем, он исходит не из рацио нальных соображений, а скорее решает интуитивно, подходит ли данный мате риал для его целей. Когда построение теории завершено, последовательный рационалистический и критический разбор наряду с экспериментальной проверкой покажет, можно ли признать эту теорию разумной".

П. А. М. Дирак: "Вполне может оказаться, что следующий решающий успех в физике придет именно так: сначала удастся открыть уравнения, и только спустя несколько лет выяснятся физические идеи, лежащие в основе этих уравнений".

А. Эйнштейн: "Весь предшест вующий опыт убеждает нас в том, что природа представляет собой реализа цию простейших математически мысли мых элементов. Я убежден, что посред ством математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений приро ды... Конечно, опыт остается единственным критерием пригодности математи ческих конструкций физики. Но на стоящее творческое начало присуще именно математике".

Из этих высказываний выдающихся ученых следует, что в настоящее время математика служит одновременно язы ком и весьма эффективным инструмен том познания мира физических явле ний.

В чем проявляется развитие физической науки?

П.А.М. Дирак: "Развитие физики в прошлом представляется как непрерывный процесс, состоящий из множества мелких шагов, на который наложилось несколько больших скачков. Разумеется, именно эти скачки и представляют собой наиболее интерес ные особенности в развитии науки... Такие большие скачки сводятся обычно к преодолению предрассудков. Некое представление может существовать у нас с незапамятных времен; оно полностью Принято и не возбуждает вопросов, так как кажется очевидным. И вот какой- нибудь физик обнаруживает сомнение, он стремится к тому, чтобы заменить предрассудок чем-то более точным, и это приводит к новому представлению о Природе".

П. Л. Капица: "... Развитие науки заключается в том, что в то время как правильно установленные факты остаются незыблемыми, теории постоянно изменяются, расширяются, совершенствуются и уточняются. В процессе этого развития мы неуклонно приближаемся к истинной картине окружающей нас природы...".

А. Эйнштейн; «Почти всякий большой успех в науке возникает из кризиса старой теории как результат попытки найти выход из создавшихся трудностей. Мы должны проверять старые идеи, старые теории, хотя они и принадлежат прошлому, ибо - это единственное средство понять значительность новых идей и пределы их справедливости».

И. Е. Т а м м: «... С каждым новым шагом выявляются границы применимости тех понятий и тех законов, которые ранее считались универсальными, и вскрываются закономерности более общего характера. Требования к каж дой норой теории становятся все более жесткими - ведь она не только должна объяснять вновь открытые факты, но и включать в себя в качестве частного случая все ранее открытые закономер ности, указывая точные границы их применимости. Так все основы класси ческой физики содержатся в более общих законах теории относительности и теории квантов...».

Е. Б. Александров: "Любые новые идеи и открытия должны неукос нительно вписываться в каркас, обра зуемый уже накопленными, достоверно установленными соотношениями, факта ми, величинами. По мере развития науки ее каркас прорастает все новыми связями и становится все жестче... Фундаментальным открытиям очень трудно найти место внутри незыблемого каркаса науки, образованного накоплен ным знанием. Их естественно искать снаружи - за пределами условий, фор мирующих опыт современной науки".

Итак, физическая наука находится в непрерывном развитии и следовательно представляет собой в целом прогрессив ную науку. В то же время, как это ни парадоксально, сами физики по своему консервативны, поскольку знают истин ную цену добываемых в научных иссле дованиях знаний.

Я. И. Френкель: "... Научное сознание всегда терзается двумя проти воречивыми тенденциями: прогрессив ной, или революционной, тенденцией открывать новые факты и консерватив ной, или реакционной, тенденцией сводить их к знакомым, привычным представлениям, т. е. объяснять их в рамках старой схемы".

М. Берн: "Физики - не револю ционеры, скорее они консервативны, и только вынуждающие обстоятельства побуждают их жертвовать хорошо ранее обоснованными представлениями".

Итак, физики весьма осторожны в предсказании нового, в особенности если это новое опровергает ранее уста новленные законы. Тем более, они скептически воспринимают те "откры тия", авторами которых являются дилетанты в науке.

Зачем нужна физическая наука человеку и человечеству в целом?

Уже из того короткого рассказа о физике и физических знаниях, что образовался на материале высказыва ний выдающихся ученых, на поставлен ный вопрос можно ответить примерно следующим образом.

Во-первых, изучение основ школьной физики позволяет понять, как устроен и как функционирует тот мир, в кото ром мы живем.

Н. А. У м о в: "Физические науки и содержанием, и обычаями высоко под нялись над обыденным уровнем мысли в настолько прикоснулись к существен ным интересам человечества, что для них афоризм "наука для науки" поте рял смысл. Как бы ни были специаль ны идеи, эксперимент и измерение, они помимо намерений работника знаний послужат или миропониманию, или материальному успеху".

В. Вайскопф: "Наука демонст рирует справедливость законов приро ды, которым подчиняется вся Вселен ная. Она проникает в суть и находит порядок в неясных ранее вещах. Она создает великое собрание вещей, благо даря которым окружающая природа становится понятной и наполненной смыслом в её развитии от газового хаоса к живому миру».

Дж. К. Максвелл: " Наука представляется нам в совершенно другом видел, когда мы обнаруживаем, что можем увидеть физические явления не только в аудитории проецированными при помощи электрического света на экран, но можем найти иллюстрацию самым высоким областям науки в играх и гимнастике, в морских и сухопутных путешествиях, в бурях на суше и на море и повсюду, где имеется материя в движении ."

Во-вторых , овладение основными законами физики даёт возможность использовать их для создания и последующей эксплуатации различных технических устройств.

А.Ф. Иоффе: "Физика –основа технического прогресса, физика-резервуар, откуда черпают новые технические идеи,- и новая технология. На определённой стадии своего развития физические исследования перестают в крупнейшие достижения техники"

С. И. Вавилов: "Применения физических фактов и законов для технических целей бесчисленны. Совре менную технику в ее наиболее эффек тивной и важной части с полным пра вом можно назвать практическим вопло щением результатов физики (механика, электротехника, теплотехника, светотех ника и т. д.) ... Выводы физики необы чайно облегчают и рационализируют работу изобретательской мысли, дают возможность расчета и максимального простого осуществления».

В-третьих, постигая физику, уча щийся познает и ее научный метод. Через него ученик начинает понимать, что ценность научного знания - в объективности, всеобщности, четкой определенности и возможности исполь зования каждым. Тогда же приходит осознание необходимости владения самими методами науки.

М. Ф а р а д е й: "... В нашем знании о знании, я бы осмелился

ска зать, много важнее знать, как достиг нуть знания, чем знать, что такое зна ние".

С. П. Капица: "Мы считаем, что один из наиболее ценных уроков физи ки - это ее метод, основанный на на блюдении и опыте, ведущий к индук тивному синтезу... Этот подход сохра няется и при реализации достижений физики в технике, при переносе ее методов в другие области науки. В нем мы видим основную ценность нашей отрасли знания и полезность опыта физики для других областей (помимо того положительного содержания пред ставлений о природе, которое она да ет)".

В-четвертых, есть еще одна доволь но существенная сторона воздействия физической науки на личность челове ка - восхищение перед красотой зако нов природы, которое проявляется у всех, глубоко погрузившихся в изуче ние физики. Разбуженные ею эмоции нередко оказываются настолько мощны ми и устойчивыми, что их обладатель готов навсегда связать свою дальней шую судьбу с наукой, с научным твор чеством. И тогда жизнь его с этого момента наполняется высочайшим смыслом служения истине.

А. Пуанкаре: "Тот, кто... увидел хотя бы издали "роскошную гармонию законов природы, будет более расположен пренебрегать своими маленькими эгоистическими интереса ми, чем любой другой. Он получит идеал, который будет любить больше самого себя, и это единственная почва, на которой можно строить мораль. Ради этого идеала он станет работать, не торгуя своим трудом и не ожидая ника ких из тех грубых вознаграждений, которые являются всем для некоторых людей. И когда бескорыстие станет его привычкой, эта привычка будет следо вать за ним всюду; вся жизнь его станет красочной- Тем более, что страсть, вдохновляющая его, есть любовь к истине, а такая любовь не является ли самой моралью?".

Этими замечательными словами о науке (во многом и нашей науке, ибо кто, как не школьные учителя, стоят у истоков творческого отношения молодежи к жизни) мы закончим беседу выда ющихся ученых и попытаемся осмыс лить свои впечатления от прочитанного.

В заключение еще раз подчеркнем, что изложенные здесь краткие сообра жения о физике как науке и научных знаниях - это всего лишь совокупность тех методологических идей, которые в процессе работы преподавателя должны быть конкретизированы и обоснованы соответствующим учебным материалом.

Л итература:

1. Прохоров А. М. Физика // БСЭ, 3-е изд.- Т. 27. - С. 337.

2. Волькенштейн М. В. Физика как теоретическая основа естествознания // Физическая теория. - М.: Наука, 1980. - С. 36,

3. Вайскопф В. физика в двадцатом столетии. - М.: Атомиздат, 1977. - С. 2-10.

4. Воспоминания об академике Л. А. Арци- мовиче. - М.: Наука, 1988. - С. 239.

5. Ньютон И. Оптика. - М.: Гостехиз дат, 1954. - С. 280, 281, 306.

6. П Л а н к М. Единство физической картины мира. - М.: Наука, 1966. - С. 23.

7. БольцманЛ. Статьи и речи. - М.: Наука, 1970. - С. 35, 56.

8. Жизнь науки. - М.: Наука, 1973. - С. 180, 198.

9. Ланжевен П. Избранные труды. - М,: Изд-во АН СССР. 1960. - С. 658.

10. Ломоносов М. В. Избранные произведения. - М.: Наука, 1986. - Т. Г. С. 33,

11. Ампер А.М. Электродинамика. – М.: Изд-во АН ССР, 1954 – с. 10.

12. Борн М. Физика в жизни моего поколения. – М., 1963 – с. 84, 190.
13. Общедоступные лекции и речи А. Г. Сто летова. - М., 1902. - С. 236.

    Мах Э. Познание и заблуждение: Очерки по психологии исследования. - М., 1909. - С. 188.

    Эйнштейн А, Собрание научных тру дов. - М.: Наука, 1967. - Т. IV . С. Ш, Ш, 229, 367, 405, 530.

    Бор Н. Атомная физика и человече ское познание; - М., 1961. - С. 142.

    Б р о и л ь Луи д е. По тропам науки. - М,: ИИЛ, 1962. - С. 162, 294, 295.

    К а п и ц а П. Л. Эксперимент. Теория. Практика, - М.г Наука, 1981. - С. 24, 190, 196.

    Ф е и н м а н Р. Характер физически» законов. - М.: Мир, 1968. - С. 9.

    В и г н е р Ю- Этюды о симметрии. - М.; Мир, 1971. - С. 187, 188.

    Вавилов С. И. Собр. соч. - М.: Изд-во АН СССР, 1956, - Т. III . С. 154.

    Мандельштам Л. И. Лекции по о птике, теории относительности и квантовой механике. - М.: Наука, 1972. - С. 326, 327.

23. Фейнман Р. КЭД - странная теория света и вещества. М.: Наука, 1988. - С- 13,

    Мах Э. Популярно-научные очерки. - СПб.. 1309. - С. 211.

    М и г д а л А. Б. Поиски истины. - М.: Молодая гвардия, 1983. - С. 153, 154,

26. Пуанкаре А. О науке. - М.; Наука, 1983. - С. 219.

    Гейзенберг В. Шаги за гори зонт. - М.: Прогресс, 1937. - С. 114, 208, 225.

    Галилео Галилей. Пробирных дел мас тер. - М.: Наука, 1987. - С. 41.

    Максвелл Дж. К. Статьи и речи. - М.: Наука. 1968. - С. 22, 37.

    Д а и с о н Ф. Математика в физических науках // Математика в современном мире. - М.: Мир, 1967. - С. 117.

    Поль Дирак и физика XX века- М.: Наука, 1990. - С. 97.

32. Китайгородский А. И. Физика - моя профессия. - М.:" Молодая гвардия. 1965. - С. 165.

    Шредингер Э. Новые пути в физике. - М.: Наука, 1971. - С. 22, 23.

    Фриш С. Э. Сквозь призму време ни. - М.: ИПЛ, 1992. - С. 371, 426.

    Стрельцова Г. Я. Блез Пас каль. - М.; Мысль. 1979. - С. 120.

    Ф е й н б е р г Б. Л. Две культуры: Интуиция и логика в искусстве и науке. - М.: Наука, 1992. - С, 80.

    Дирак П. А. М. Воспоминания о необычайной эпохе. - М.: Наука, 1990. - С. 66.

    Т а м м И. Е. Собр. науч. трудов. - М.; Наука, 1975. - Т. II . С. 428.

    А л е к с а н д р о в Е. Б. Теневая наука // Наука и жизнь. – 1991. - № 1. – С.58.

    Ф р е н к е л ь Я. И. На заре новой физики. – Л.: Наука, 1969. – С. 261.

    У м о в Н. А. Культурная роль физических наук // Журнал русской физической мысли. - № 1, вып. I . – Реутов, 1991. – С. 9.

    И о ф ф е А. Ф. щ физике и физиках. – Л.: Наука, 1985. – С. 394.

    Современные историко-научные исследования(Великобритания). Реф. Сб. – М., 1983. – С. 68

    К а п и ц а С. П. образование в области физики и общая культура // Вестник АН СССР, 1982. – № 4. – С. 85.

Если вы считаете, что физика - это скучно, то эта статья для вас. Мы расскажем нескучные факты, которые помогут по-новому взглянуть на нелюбимый предмет.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

№1: почему Солнце по вечерам красное?

Вообще-то свет Солнца белый. Белый свет при его спектральном разложении представляет собой сумму всех цветов радуги. В вечернее и утреннее время лучи проходят через низкие приземные и плотные слои атмосферы. Частицы пыли и молекулы воздуха, таким образом, работают как красный фильтр, лучше всего пропуская красную составляющую спектра.

№2: откуда взялись атомы?

Когда Вселенная образовалась, атомов не было. Были только элементарные частицы, да и то не все. Атомы элементов практически всей таблицы Менделеева образовались в ходе ядерных реакций в недрах звезд, когда более легкие ядра превращаются в более тяжелые. Мы и сами состоим из атомов, образовавшихся в далеком космосе.

№3: сколько в мире «темной» материи?

Мы живем в материальном мире и все, что есть вокруг, – материя. Ее можно потрогать, продать, купить, можно что-то построить. Но в мире есть не только материя, а еще и темная материя. Она не излучает электромагнитного излучения и не взаимодействует с ним.

Темную материю, по понятным причинам, никто не трогал и не видел. Ученые решили, что она существует, наблюдая некоторые косвенные признаки. Считается, что темная материя занимает около 22% в составе Вселенной. Для сравнения: привычная нам старая добрая материя занимает лишь 5%.

№4: какая температура у молнии?

И так понятно, что очень высокая. По данным науки она может достигать 25000 градусов Цельсия. Это во много раз больше, чем на поверхности Солнца (там всего около 5000). Настоятельно не рекомендуем пытаться проверять, какая температура у молнии . Для этого в мире есть специально обученные люди.

Есть! Учитывая масштабы Вселенной, вероятность этого и ранее оценивалась достаточно высоко. Но лишь относительно недавно люди начали открывать экзопланеты.

Экзопланеты вращаются вокруг своих звезд в так называемой «зоне жизни». Сейчас известно более 3500 экзопланет, и открывают их все чаще.

№6: сколько лет Земле?

Земле около четырех миллиардов лет. В контексте с этим интересен один факт: самой большой единицей измерения времени является кальпа. Кальпа (иначе - день Брахмы) – это понятие из индуизма. Согласно ему день сменяется ночью, равной ему по продолжительности. При этом, продолжительность дня Брахмы с точностью до 5% совпадает с возрастом Земли.

Кстати! Если времени на учебу катастрофически не хватает, обратите внимание. Для наших читателей сейчас действует скидка 10% на


№7: откуда берется полярное сияние?

Полярное или северное сияние – это результат взаимодействия солнечного ветра (космического излучения) с верхними слоями атмосферы Земли.

Заряженные частицы, прилетевшие из космоса, сталкиваются с атомами в атмосфере, в результате чего те возбуждаются и излучают свет. Это явление наблюдается на полюсах, так как магнитное поле Земли «захватывает» частицы, защищая планету от «бомбардировки» космическими лучами.

№8: правда ли, что вода в раковине закручивается в разные стороны на северном и южном полушариях?

На самом деле это не так. Действительно, существует сила Кориолиса, действующая на поток жидкости во вращающейся системе отсчета. В масштабах Земли действие этой силы настолько мало, что наблюдать закручивание воды при стоке в разные стороны можно только в очень тщательно подобранных условиях.

№9: чем вода отличается от других веществ?

Одно из фундаментальных свойств воды – это ее плотность в твердом и жидком состояниях. Так, лед всегда легче жидкой воды, поэтому всегда находится на поверхности и не тонет. А еще, горячая вода замерзает быстрее холодной. Этому парадоксу, названному эффектом Мпембы, до сих пор не нашли точного объяснения.

№10: как скорость влияет на время?

Чем быстрее движется объект, тем медленнее будет идти для него время. Здесь можно вспомнить парадокс близнецов, один из которых путешествовал на сверхбыстром космическом корабле, а второй оставался на земле. Когда космический путешественник вернулся домой, он застал своего брата стариком. Ответ на вопрос, почему так происходит, дает теория относительности и релятивистская механика .


Надеемся, наши 10 фактов о физике помогли убедиться в том, что это не только скучные формулы, а целый мир вокруг нас.

Тем не менее, формулы и задачи могут доставить массу хлопот. Чтобы сэкономить время мы собрали самые популярные формулы и подготовили памятку по решению физических задач .

А если вы устали от строгих преподавателей и бесконечных контрольных, обратитесь в , который поможет быстро решить даже задания повышенной сложности.