Строение атома ксенона. База данных по теплофизическим свойствам газов и их смесей, используемых в яэу Что такое газ ксенон

Ксенон
Атомный номер 54
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
131,29 а. е. м. ( /моль)
Радиус атома ? (108) пм
Энергия ионизации
(первый электрон)
1 170,0 (12,13) кДж /моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 6
Химические свойства
Ковалентный радиус 140 пм
Радиус иона 190 пм
Электроотрицательность
(по Полингу)
2,6
Электродный потенциал 0
Степени окисления 0, +1, +2, +4, +6, +8
Термодинамические свойства простого вещества
Плотность 3,52 (при −109 °C) /см ³
Молярная теплоёмкость 20,79 Дж/( ·моль)
Теплопроводность 0,0057 Вт /( ·)
Температура плавления 161,3
Теплота плавления 2,27 кДж /моль
Температура кипения 166,1
Теплота испарения 12,65 кДж /моль
Молярный объём 42,9 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
гранецентрированая
Параметры решётки 6,200
Отношение c/a
Температура Дебая n/a
Xe 54
131,29
4d 10 5s 2 5p 6
Ксенон

Ксенон — элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов, с атомным номером 54. Обозначается символом Xe (Xenon). Простое вещество ксенон (CAS-номер: 7440-63-3) — инертный одноатомный газ без цвета, вкуса и запаха. Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону.

Происхождение названия

ξένος — чужой.

Распространённость

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Физические свойства

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Химические свойства

Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона.

Изотопы ксенона

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон. Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.

КСЕНОН, Xe (от греческого xenos — чужой * а. xenon; н. xenon; ф. xenon; и. xenon),- химический элемент VIII группы периодической системы Менделеева , относится к инертным газам , атомный номер 54, атомная масса 131,3. Природный ксенон — смесь девяти стабильных изотопов, среди которых наиболее распространены 129 Xe, 131 Xe, 132 Xe. Открыт в 1898 английским учёными У. Рамзаем и М. Траверсом.

Ксенон — одноатомный инертный газ без цвета и запаха. Плотность 5851 кг/м 3 , t плавления -111,8°С, t кипения -108,1°С. В твёрдом состоянии имеет кубическую гранецентрированную решётку; параметр элементарной ячейки а=0,625 нм (при -185°С). Ксенон проявляет степени окисления +1, +2, +4, +6, +8. Непосредственно ксенон взаимодействует только со фтором , образуя XeF 2 , XeF 4 , XeF 6 . Наиболее устойчив XeF 4 , из которого в водном растворе получается неустойчивый, нелетучий и взрывчатый триоксид XeO 3 ; известен и тетраоксид XeO 4 . В водных растворах образуются соли ксеноновой кислоты, получены также соли с 8-валентным ксеноном — перксенаты. Синтезированы двойные соли: XeF 2 .2SbF 5 , XeF 6 .AsF 3 и др. Ксенон образует также клатраты (например, Xe.5,75Н 2 О и др.).

В природных условиях соединения ксенона неизвестны. В изученных породах ювенильного происхождения концентрация ксенона варьирует более чем в 1000 раз; наиболее вероятная концентрация ксенона в базальтах , кимберлитах и включениях в них 7.10 -12 см 3 /г. В глинах концентрация ксенона от 10 -10 до 10 -8 см 3 /г. В воздухе объёмная концентрация ксенона 8,77.10 -6 %. Общее количество ксенона в атмосфере Земли 3,5.10 17 см 3 . В мантии до глубины 200-400 км общее количество ксенона много меньше, чем в атмосфере. Изотопный состав мантийного ксенона практически неотличим от изотопного состава атмосферного ксенона. Большое обогащение изотопом 129 Xe найдено в каменных и железных (в силикатных и сульфидных включениях) метеоритах, в атмосфере Mapca. В урансодержащих минералах имеется ксенон спонтанного деления 238 U (изотопы 136 Xe, 134 Xe, 132 Xe, 131 Xe) и ксенон нейтронно-индуцированного деления 235 U (те же изотопы и 129 Xe Соотношение концентрации этих изотопов ксенона зависит от химического состава минерала. В теллуридах, теллуровисмутитах и других минералах Te накапливается изотоп 130 Xe за счёт 2b - -распада 130 Te (ТЅ=10 21 лет). В некоторых баритах в земных условиях, а также во внеземном веществе (метеориты, лунный грунт) содержатся нейтронно-дефицитные изотопы ксенона 124 Xe, 126 Xe, 128 Xe, 129 Xe, 130 Xe, 131 Xe — продукты расщепления атомных ядер Ba и редкоземельных элементов высокоэнергетичными протонами космического излучения.

В промышленности ксенон получают из воздуха методом глубокого охлаждения с последующей ректификацией . Используют ксенон для наполнения ламп накаливания, рентгеновских трубок и мощных газоразрядных и импульсных света. Радиоактивные изотопы ксенона применяют в качестве источников излучения в радиографии. Определение концентрации изотопов ксенона в урановых минералах позволяет определить их возраст.

Ксенон (лат. Xenonum), Xe, химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; атомный номер 54, атомная масса 131,30. На Земле Ксенон присутствует главным образом в атмосфере. Атмосферный Ксенон состоит из 9 стабильных изотопов, среди которых преобладают 129 Хе, 131 Хе и 132 Хе. Открыт в 1898 году английскими исследователями У. Рамзаем и М. Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как примесь к криптону, с чем связано его название (от греч. xenos - чужой). Ксенон -весьма редкий элемент. При нормальных условиях 1000 м 3 воздуха содержат около 87 см 3 Ксенона. Ксенон - одноатомный газ без цвета и запаха; плотность при 0 °С и 10 5 н/м 2 (760 мм рт. ст.) 5,851 г/л, t пл -111,8 °С, t кип -108,1 °С. В твердом состоянии обладает кубической решеткой с параметром элементарной ячейки а = 6.25Å (при -185 °С). Пятая, внешняя электронная оболочка атома Ксенона содержит 8 электронов и весьма устойчива. Однако притяжение внешних электронов к ядру в атоме Ксенона экранировано большим количеством промежуточных электронных оболочек, и первый потенциал ионизации Ксенона, хотя и довольно велик (12, 13 эв), но значительно меньше, чем у других стабильных инертных газов. Поэтому Ксенон был первым инертным газом, для которого удалось получить химические соединение - XePtF 6 (канадский химик Н. Бартлетт, 1961). Дальнейшие исследования показали, что Ксенон способен проявлять валентности I, II, IV, VI и VIII. Лучше всего изучены соединения Ксенон с фтором: XeF 2 , XeF 4 , XeF 6 , XeF 8 , которые получают в специальных условиях, используя никелевую аппаратуру. Так, ХеF 4 можно синтезировать при простом пропускании смеси Хе и F 2 через нагретую никелевую трубку. Синтез XeF 2 возможен при облучении смеси Хе и F 2 ультрафиолетовым излучением. Получить же фториды XeF 6 и XeF 8 удается только при использовании высоких давлений (до 20 Мн/м 2 , или 200 ат) и повышенной температуры (300-600 °С). ХеF 4 наиболее устойчив (длительное время сохраняется при комнатной температуре), наименее устойчив XeF 8 (сохраняется при температуре ниже 77 К). При осторожном упаривании раствора XeF 4 в воде образуется весьма неустойчивый нелетучий оксид ХеО 3 - сильное взрывчатое вещество. Действием раствора Ва(ОН) 2 на XeF 6 можно получить ксенонат бария Ва 3 ХеО 6 Известны и соли, содержащие восьмивалентный Ксенон, - перксенонаты, например Na 4 ХеО 6 ·6Н 2 О. Действуя на него серной кислотой, можно получить высший оксид ХеO 4 . Известны двойные соли XeF 2· 2SbF 5 , XeF 6 ·AsF 3 и других, перхлорат ХеClО 4 - очень сильный окислитель и другие.

В промышленности Ксенон получают из воздуха. Вследствие очень низкого содержания Ксенона в атмосфере объем производства невелик.

Одно из самых важных применений Ксенона - использование его в мощных газоразрядных лампах. Кроме того, Ксенон находит применение для исследовательских и медицинских целей. Так, благодаря высокой способности Ксенона поглощать рентгеновское излучение его используют как контрастное вещество при исследовании головного мозга. Фториды Ксенона находят применение как мощные окислители и фторирующие агенты. В виде фторидов удобно хранить и транспортировать чрезвычайно агрессивный фтор.

Ксенон (лат. xenonum), xe, химический элемент viii группы периодической системы Д. И. Менделеева, относится к инертным газам; ат. н. 54, ат. м. 131,30. На Земле К. присутствует главным образом в атмосфере. Атмосферный К. состоит из 9 стабильных изотопов, среди которых преобладают 129 xe, 131 xe и 132 xe. Открыт в 1898 английскими исследователями У. Рамзаем и М. Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. К. был обнаружен как примесь к криптону, с чем связано его название (от греч. x e nos - чужой). К. - весьма редкий элемент. При нормальных условиях 1000 м 3 воздуха содержат около 87 см 3 К.

К. - одноатомный газ без цвета и запаха; плотность при 0°С и 10 5 н/м 3 (760 мм рт. cm. ) 5,851 г/л , t пл -111,8 °С, t кип -108,1 °С. В твёрдом состоянии обладает кубической решёткой с параметром элементарной ячейки а= 6,25 a (при -185 °С). Пятая, внешняя электронная оболочка атома К. содержит 8 электронов и весьма устойчива. Однако притяжение внешних электронов к ядру в атоме К. экранировано большим количеством промежуточных электронных оболочек, и первый потенциал ионизации К., хотя и довольно велик (12, 13 эв ), но значительно меньше, чем у других стабильных инертных газов. Поэтому К. был первым инертным газом, для которого удалось получить химическое соединение - xeptf 6 (канадский химик Н. Бартлетт, 1961). Дальнейшие исследования показали, что К. способен проявлять валентности i, ii, iv, vi и viii. Лучше всего изучены соединения К. с фтором: xef 2, xef 4 , xef 6 , xef 8 , которые получают в специальных условиях, используя никелевую аппаратуру. Так, xef 4 можно синтезировать при простом пропускании смеси xe и f 2 через нагретую никелевую трубку. Синтез xef 2 возможен при облучении смеси xe и f 2 ультрафиолетовым излучением. Получить же фториды xef 6 и xef 8 удаётся только при использовании высоких давлений (до 20 Мн/м 2 , или 200 ат ) и повышенной температуры (300-600°С). xef 4 наиболее устойчив (длительное время сохраняется при комнатной температуре), наименее устойчив xef 8 (сохраняется при температуре ниже 77 К). При осторожном упаривании раствора xef 4 в воде образуется весьма неустойчивый нелетучий окисел xeo 3 - сильное взрывчатое вещество. Действием раствора ba (oh) 2 на xef 6 можно получить ксенонат бария ba 3 xeo 6 . Известны и соли, содержащие восьмивалентный К., - перксенонаты, например na 4 xeo 6 · 6h 2 o. Действуя на него серной кислотой, можно получить высший окисел xeo 4 . Известны двойные соли xef 2 · 2sbf 5 , xef 6 · asf 3 и др., перхлорат xecio 4 - очень сильный окислитель и др.

В промышленности К. получают из воздуха. Вследствие очень низкого содержания К. в атмосфере объём производства невелик. Одно из самых важных применений К. - использование его в мощных газоразрядных лампах. Кроме того, К. находит применение для исследовательских и медицинских целей. Так, благодаря высокой способности К. поглощать рентгеновское излучение его используют как контрастное вещество при исследовании головного мозга. Фториды К. находят применение как мощные окислители и фторирующие агенты. В виде фторидов удобно хранить и транспортировать чрезвычайно агрессивный фтор.

ОПРЕДЕЛЕНИЕ

Ксенон - пятьдесят четвертый элемент Периодической таблицы. Обозначение - Xe от латинского «xenon». Расположен в пятом периоде, VIIIA группе. Относится к группе инертных (благородных газов). Заряд ядра равен 54.

Ксенон представляет собой бесцветный газ. Содержание его в воздухе составляет 8×10 -6 % (об.). Он плохо растворяется в воде, лучше — в органических растворителях. Образует сольват состава 4Хе×3С 6 Н 5 ОН.

Ксенон не реагирует с кислотами, щелочами.Реакционная способность ксенона выше, чем у криптона: он взаимодействует с сильными окислителями. Этот газ получают путем фракционной дистилляции жидкого воздуха при глубоком охлаждении.

Атомная и молекулярная масса ксенона

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Поскольку в свободном состоянии ксенон существует в виде одноатомных молекул Хe, значения его атомной и молекулярной масс совпадают. Они равны 131,239.

Изотопы ксенона

Известно, что в природе ксенон может находиться в виде девяти стабильных изотопов 124 Хe, 126 Хe, 128 Хe, 129 Хe, 130 Хe, 131 Хe, 132 Хe, 134 Хe и 136 Хe. Их массовые числа равны 124, 126, 128, 129, 130, 131, 132, 134 и 136 соответственно. Ядро атома изотопа ксенона 124 Хe содержит пятьдесят четыре протона и пятьдесятсемьдесят нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы ксенона с массовыми числами от 110-ти до 147-ми, а также двенадцать изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 127 Хe с периодом полураспада равным 36,345 суток.

Ионы ксенона

На внешнем энергетическом уровне атома ксенона имеется восемь электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 6 .

Ксенон - первый инертный газ, для которого были получены химические соединения. В результате химического взаимодействия ксенон отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Хe 0 -1e → Хe + ;

Хe 0 -2e → Хe 2+ ;

Хe 0 -4e → Хe 4+ ;

Хe 0 -6e → Хe 6+ ;

Хe 0 -8e → Хe 8+ .

Молекула и атом ксенона

В свободном состоянии ксенон существует в виде одноатомных молекул Хе. Приведем некоторые свойства, характеризующие атом и молекулу ксенона:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Вычислите энергию ионизации для иона ксенона Хе(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3).
Решение Рассчитаем энергию ионизации иона аргона Хе(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3):

nikola-tesla24.ru - Образование для всех - NikolaTesla24