Теория электролитической диссоциации. Теория электрической диссоциации 1 теория электролитической диссоциации степень диссоциации электролитов

История открытия такого интересного явления в химии как электролитическая диссоциация началась в 1887 году, когда шведский химик Сванте Аренниус во время исследований электропроводности водных растворов, высказал предположение, что в подобных растворах вещества могут распадаться на заряженные частицы – ионы. Ионы эти пребывают в движении, передвигаясь к электродам, как положительно заряженному катоду, так и отрицательно заряженному аноду. Этот процесс распада и получил название электролитической диссоциации, именно он является причиной появления электрического тока в растворах.

Теория электролитической диссоциации

Классическая теория электролитической диссоциации, разработанная первооткрывателем С. Аренниусом совместно с В. Освальдом, прежде всего, предполагала, что распад молекул на ионы (собственно диссоциация) происходит под действием электрического тока. Впоследствии выяснилось, что это не совсем так, поскольку было выявлено существование ионов в водных растворах, независимо от того, проходил через них ток или нет. Тогда Сванте Аренниус сформировал новую теорию, суть ее заключается в том, что электролиты самопроизвольно распадаются на ионы под воздействием растворителя. А уже наличие ионов создают идеальные условия для электропроводности в растворе.

Примерно так выглядит электролитическая диссоциация схематично.

Большое значение электролитической диссоциации в растворах заключается в том, что она позволяет описывать свойства кислот, оснований и солей, и далее мы детально на этом остановимся

Электролитическая диссоциация кислот

Н 3 РО 4 ⇄ Н + Н 2 РО- 4 (первая ступень)
Н 2 РО 4 ⇄ Н + НРO 2 - 4 (вторая ступень)
Н 2 РО 4 ⇄ Н+ PО З - 4 (третья ступень)

Так выглядят химические уравнения электролитической диссоциации кислот. В примере показана электролитическая диссоциация фосфорной кислоты Н 3 РО 4 которая распадается на водород H (катион) и ионы анодов. Причем диссоциация много основных кислот проходит, как правило, только по первой ступени.

Электролитическая диссоциация оснований

Основания отличаются от кислот тем, что при их диссоциации в качестве катионов образуются гидроксид-ионы.

Пример уравнения химической диссоциации оснований

KOH ⇄ K + OH-; NH 4 OH ⇄ NH+ 4 + OH-

Основания, которые растворяются в воде, называют щелочами, их не так уж и много, в основном это основания щелочных и щелочноземельных , таких как LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2

Электролитическая диссоциация солей

При электролитической диссоциации солей в качестве катионов образуются металлы, а также катион аммония NH 4 , а анионами стают кислотные остатки.

(NH 4) 2 SO 4 ⇄ 2NH+ 4 + SO 2 - 4 ; Na 3 PO 4 ⇄ 3Na + PO 3- 4

Пример уравнения электролитической диссоциации солей.

Электролитическая диссоциация, видео

И в завершение образовательное видео по теме нашей статьи.

Своё начало теория электролитов берёт ещё в первой половине XIX века, когда М. Фарадей провёл свои знаменитые опыты с растворами поваренной соли. Он установил, что абсолютно чистая вода очень плохо проводит электрический ток, но стоит добавить в неё несколько кристаллов соли, и проводимость тут же возрастает. Уже тогда родилось предположение, что соль распадается в воде на некие частицы, которые способны проводить электрический ток, однако, полноценная теория , описывающая все эти процессы в растворах, появилась гораздо позже.

Теория электролитической диссоциации

Теория, основоположником которой явился Сванте Аррениус в период 1883-1887 гг., базируется на идее, что при попадании молекул растворимого вещества (электролита) в полярную или неполярную жидкость происходит их диссоциация на ионы . Электролитами называются соединения, которые в растворе самопроизвольно распадаются на ионы, способные к самостоятельному существованию. Количество образующихся ионов, их строение и величина заряда зависят только от природы диссоциировавшей молекулы.

Для использования теории в описании свойств растворения используется ряд допущений, а именно: предполагается, что диссоциация является неполной, ионы (их электронные оболочки) не реагируют друг с другом, а их поведение можно описать законом действующих масс в идеальных условиях. Если рассмотреть теоретическую систему , где электролит КА находится в фазовом равновесии с продуктами своей диссоциации - катионом К+ и анионом А-, то согласно закону действующих масс можно составить уравнение реакции диссоциации:

KA = K+ + A- (1)

Константа равновесия, записанная, через концентрации веществ при изотермических условиях будет иметь следующее значение:

Кд = x / (2)

В этом случае (в уравнении 2), константа равновесия Кд, будет являться не чем иным, как константой диссоциации, значения , , в правой части - это равновесные концентрации электролита и его продуктов диссоциации.

Учитывая допущение теории Аррениуса, которые были применены автором, в частности, о неполноте диссоциации, вводится понятие степени диссоциации - α. Таким образом, если выразить концентрацию раствора С (моль/л), то на литр раствора приходится αС моль электролита (КА), а равновесная его концентрация может быть выражена, как (1-α)С моль/л. Из уравнения реакции (1) очевидно, что на αС моль электролита (КА) образуется такое же количество ионов К+ и А-. Если подставить все эти величины в уравнение (2) и провести ряд упрощений, то получим формулу константы диссоциации (степень диссоциации формула):

Кд = ∝ 2 x С /1-∝ (3)

Это уравнение позволяет количественно определить величину степени электролитической диссоциации в разных растворах.

Теория Аррениуса дала развитие множеству научных направлений в химии: с её помощью были созданы первые теории кислот и оснований, были даны объяснения физико-химическим процессам в гомогенных системах. Тем не менее, она не лишена недостатков, которые в основном относятся к тому факту, что теория не учитывает межионные взаимодействия.

Классификация электролитов с примерами

Электролиты классифицируют на слабые и сильные, периодически выделяя группу электролитов средней силы. Сильные электролиты характеризуются тем, что распадаются в растворе полностью . Как правило - это сильные минеральные кислоты, например:

  • Азотная кислота - HNO3.
  • Хлороводородная кислота - HCl.
  • Хлорная кислота - HClO4.
  • Ортофосфорная кислота - H3PO4.

Сильными электролитами могут быть основания, например:

  • Гидроксид калия - KOH.

Основная масса сильных электролитов - это подавляющее большинство солей (NaCl, Na2SO4, Ca (NO3)2, CH3COONa, хлориды, сульфиды).

Слабые электролиты, напротив, в растворах гидратируют частично. К этой группе следует относить неорганические кислоты (H2CO3, H3BO3, H3AsO4), слабые основания (аммоний), некоторые соли (HgCl2), органические кислоты (CH3COOH, C6H5COOH), фенолы и амины. В неводных растворах одни и те же соединения могут являться и сильными и слабыми электролитами, таким образом, зависят от природы растворителя.

Диссоциация кислот, оснований и солей

Закономерности для кислот

При электрической диссоциации кислот в водных растворах обязательно в качестве катионов образуются положительно заряженные ионы водорода (Н+):

HNO3 → H+ + NO3-

Если кислота многоосновная (например: уравнение диссоциации H2SO4), то диссоциация происходит последовательно, за каждый раз отщепляя один ион водорода:

H2SO4 → H + + HSO4- первая ступень - гидросульфат ион

HSO4- → H + + SO4- вторая ступень - сульфат ион

Процесс для многоосновной кислоты, как правило, протекает максимально по первой ступени, степень диссоциации последующих намного меньше.

Характеристика процесса для щелочей

При диссоциации щелочей в водных растворах обязательно образуется отрицательно заряженный гидроксил ион (ОН-):

NaOH → Na+ + OH-

Процесс для многокислотных оснований (пример - механизм диссоциации гидроксида магния) протекает многоступенчато аналогично многоосновным кислотам:

Mg (OH)2 → OH- + Mg (OH)+ первая ступень

Mg (OH)+ → OH- + Mg2+ вторая ступень

Существуют также случаи, когда в процессе диссоциации могут образовываться и катионы водорода, и гидроксил-анионы (при диссоциации амфолитов или амфотерных соединений, например, Zn, Al):

2OH- + Zn2+ + 2H2O ←→ Zn (OH)2 + H2O ←→ 2- + 2H+

Правила протекания для кислых и основных солей

Для кислых солей, основная закономерность заключается в следующем - сначала диссоциируют катионы (положительно заряженные металлы), а только потом катионы водорода:

KHSO4 → K+ + HSO4- первая ступень

HSO4 - → H+ + SO4- вторая ступень

У основных солей, в первую очередь, переходят в раствор остатки кислоты, а уже затем гидроксил-ион:

BaOHCl → Cl- + Ba (OH)+ первая ступень

Ba (OH)+ → OH- + Ba2+ вторая ступень

Водородный показатель

Определение, сущность и значение

Процессы диссоциации могут протекать не только для растворенных веществ , но и растворителя. Так, вода является сама со себе слабым электролитом и для неё характерна диссоциация в очень незначительной степени. Уравнение процесса можно записать следующим образом:

Н2О= Н3О+ + ОН-

Одна молекула воды диссоциирует на положительно заряженные ионы водорода и отрицательно заряженные анионы гидроксония. Именно концентрация этих ионов определяет уровень кислотности раствора - чем больше ионов гидроксония, тем более кислый раствор.

Концентрация ионов гидроксония в реальных растворах, как правило, очень мала (например: 5×10−6 г/л) и поэтому для удобства, это значение логарифмируют, а чтобы получить положительное значение, берут с обратным знаком. Кратко сформулируем строгое определение понятия «водородный показатель» или рН.

рН (водородный показатель) - это отрицательный натуральный логарифм концентрации ионов гидроксония, отражающий кислотность раствора.

рН= — lg

Значения водородного показателя принято оценивать по шкале значений от 0 до 14, где 0 - наиболее кислый раствор, а 14 - наиболее щелочной. Нейтральным раствором (соответствующим рН чистой воды) считается раствор со значением 7. Для примера приводим несколько типичных растворов, имеющих характерные значения водородного показателя:

Значительно реже прибегают к использованию еще одного показателя - рОН. По своему смыслу он абсолютно аналогичен водородному показателю, за исключением того, что за основу берётся концентрация гидроксил-ионов.

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электрической проводимости раствора можно рассчитать его осмотическое давление, а следовательно, и поправочный коэффициент L Значения i, вычисленные им из электрической проводимости, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой - ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации.

Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами, к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами : к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация HCl выразится уравнением:

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля, о которых говорилось в начале этой главы. В качестве примера мы приводили понижение температуры замерзания раствора NaCL Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na + и Cl - . При этом из одного моля NaCl получается не 6,02 IO 23 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению

осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем если бы хлорид бария находился в нем в виде молекул BaCl 2 .

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И.А. Каблукову , впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

  • Иван Алексеевич Каблуков (1857-1942) занимался изучением электрическойпроводимости растворов. Его работа «Современные теории растворов (Вант-Гоффаи Аррениуса) в связи с учением о химическом равновесии» оказала большое влияние наразвитие физической химии в России и способствовала углублению теории электролитической диссоциации.

Теория электролитической диссоциации Аррениуса. Закон разбавления Оствальда. Степень диссоциации, константа диссоциации. Недостатки теории Аррениуса.

ТеорияэлектролитическойдиссоциацииАррениуса

Для электролитов коллигативные свойства растворов (понижение температуры замерзания, повышение температуры кипения, понижение давления пара растворителя над раствором и осмотическое давление) значительно больше соответствующих величин для неэлектролитов. В уравнение для осмотического давления p Вант-Гофф ввел эмпирический коэффициентi > 1, физический смысл которого стал понятен с появлением теории электролитической диссоциации:

p = i cRT .

Теория электролитической диссоциации была предложена Аррениусом (1884-1887), развившим отдельные высказывания ряда ученых.

Основные положения теории Аррениуса :

1. Соли, кислоты, основания при растворении в воде и некоторых других полярных растворителях частично или полностью распадаются (диссоциируют) на ионы . Эти ионы существуют в растворе независимо от того, проходит через раствор электрический ток или нет. Вследствие этого число независимо движущихся частиц растворенного вещества больше, чем при отсутствии диссоциации, а величины коллигативных свойств растворов возрастают прямо пропорционально числу частиц. Ионы представляют собой заряженные частицы, которые состоят или из отдельных атомов, или из группы атомов. Предполагается, что ионы в растворе ведут себя подобно молекулам идеального газа, то есть не взаимодействуют друг с другом.

2. Наряду с процессом диссоциации в растворе идет обратный процесс - ассоциация ионов в молекулы. Таким образом, диссоциация молекул на ионы является неполной , поэтому в качестве меры электролитической диссоциации Аррениус ввел величину степени диссоциации a , определяемую как долю молекул, распавшихся на ионы:

a == .

Для любой обратимой реакции электролитической диссоциации

К n + А n - Û n + К z + + n A z

сумма n + + n – равна общему числу n ионов, образующихся при диссоциации одной молекулы; связь с коэффициентом Вант-Гоффаi дается уравнением

i =1+( n + + n - 1) × a =1+(n - 1) × a .

Определив коэффициент i , можно по этому уравнению вычислить степень диссоциации a , если известна величина n .

Коэффициент i показывает, во сколько раз увеличивается общая молярная конценрация частиц в растворе за счет диссоциации электролита. По мере увеличения разведения коэффициент Вант-Гоффа приближается к простому целому числу(2, 3, 4 - в зависимости от числа ионов, образующихся из одной молекулы вещества).

3. Диссоциация растворенных веществ на ионы подчиняется тем же законам химического равновесия, что и другие реакции , в частности, закону действующих масс

К д,с =,

гдеК д,с - константадиссоциации , выраженная через концентрации, или так называемая классическая константа диссоциации .

Диссоциация сильных электролитов равна 100% или почти 100%, так что концентрации ионов можно считать равными молярности растворенного вещества, умноженной на n + (n – ):

с + =с × n + ,с – =с × n – .

При диссоциации слабого электролита устанавливается равновесие между недиссоциированными молекулами и ионами. Рассмотрим простейший пример , когда молекула распадается только на два иона:

СН 3 СООН Û СН 3 СОО – +Н +

с - a с a с a с(равновесные концентрации)

К д,с ==

К д,с = =

Последнее равенство является простейшей формойзаконаразведенияОствальда (1888), поскольку величина V = 1/с , л/моль, называется разведением.

Чем большеК д,с, тем выше степень диссоциации. Таким образом, величинаК д,с может служить мерой силы кислоты, то есть мерой кислотности. Для электролитов средней силы (Н 3 РО 4 - первая ступень, Са(ОН) 2 , СНСl 2 СООН) значения К д,с лежат в пределах от 10 –2 до 10 –4 ; для слабых электролитов (СН 3 СООН, N Н 4 ОН)К д,с = 10 –5 - 10 –9 ; приК д,с < 10 –10 электролит считается очень слабым (Н 2 О, С 6 Н 5 ОН, С 6 Н 5 N Н 2 , НСN ).

Зная константу диссоциации, можно рассчитать степень диссоциации в зависимости от концентрации электролита. Решая квадратное уравнение и учитывая, что a > 0, получим

.

Как следует из данного уравнения, при условииК д,с >> 4с , a ® 1, то есть электролит становится полностью диссоциированным. С другой стороны, при малых К д,с (обычно < 10 –5) и при не очень низких конценрациях, когдаК д,с << 4с , величиной a можно пренебречь по сравнению с 1 в знаменателе закона разведения Оствальда, и формулы примут вид

К д,с = a 2 с; a = .

Вышеприведенные соотношения применимы только для растворов симметричных бинарных электролитов (то есть если одна молекула электролита дает один катион и один анион). Если электролит распадается больше чем на два иона, то зависимостьК д,с от a усложняется:

Са Cl 2 Û Ca 2+ +2Cl

с (1- a ) a с2 a с

К д,с = ==

Рис. 22. Зависимость степени диссоциации слабого электролита a от его концентрации с

Рис. 23. Зависимость константы диссоциации и степени диссоциации слабого электролита от температуры

Степень диссоциации a , а следовательно и К д,с, зависят также от температуры , зависимость проходит через максимум (см. рис. 23). Это можно объяснить влиянием двух противоположно направленных воздействий. С одной стороны, всякая диссоциация протекает с поглощением тепла, и, следовательно, при повышении температуры равновесие должно смещаться в сторону большей диссоциации. С другой стороны, при повышении температуры диэлектрическая проницаемость воды, служащей растворителем, уменьшается, а это способствует воссоединению ионов. К д,с максимальна при той Т, при которой влияние второго фактора начинает преобладать. Обычно изменениеК д,с с повышением Т невелико.

Зависимость К д,с от температуры описывается уравнением изобары Вант-Гоффа: G о =RT ln К д,с.