Тепло Земли. Геотермальная энергия. Перспективы и проблемы геотермальной энергетики В каких странах используется геотермальная энергия


Геотермальные ресурсы представляют собой практически неисчерпаемый, возобновляемый и экологически чистый источник энергии, который будет играть существенную роль в энергетике будущего. Так как во многих добываемых геотермальных водах растворены химические элементы, оказывающие губительное воздействие на трубопроводы (коррозия) и на здоровье потребителей, в настоящее время большое внимание уделяется на очистку этой воды и разделение из нее химических элементов. Как одна из невозобновляемых источников энергии, геотермальная энергетика остается и останется на одном из ведущих мест в энергетики страны.

Геотермальная энергетика

Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. В качестве носителей этой энергии могут выступать как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из горячих недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03Вт/м². Под воздействием этого потока, в зависимости от свойств горных пород, возникает градиент температуры – так называемая геотермальная ступень. В большинстве мест, геотермальная ступень составляет не более 2-3˚С/100м.

Сегодня в качестве источников геотермальной энергии для получения тепла и/или для производства электроэнергии экономически целесообразно оказывается использовать лишь термальные воды и парогидротермы. Легкодоступных геотермальных месторождений с температурой более 100˚С на земном шаре сравнительно немного. Для производства электроэнергии с приемлемыми технико-экономическими показателями температура должна быть не ниже 100˚С. В настоящее время суммарная мощность действующих в мире геотермальных электростанций составляет около 10 ГВт(э). Суммарная мощность существующих геотермальных систем теплоснабжения оценивается примерно в 20 ГВт(э).

Основные проблемы геотермального теплоснабжения связаны с солеотложением и коррозионной стойкостью материалов и оборудования, работающих в условиях агрессивной среды. С целью избегания загрязнения окружающей среды, рек и водоемов, извлекаемыми из недр земли минеральными соединениями современные технологии использования геотермальной энергии предусматривает обратную закачку отработавшего геотермального флюида в пласт.

Рис 1. Тепловая схема энергоустановки

1-парогенератор; 2- накопитель пара; 3- турбина; 4- эжектор; 5- конденсатор; 6,7- насосы; ЭС- эксплуатационная скважина; НС- нагнетательная скважина

Краткий обзор гидрогеотермических исследований

Гидрогеотермальные ресурсы наряду с солнечной, ветровой, приливно-отливной энергиями являются тем новым, возобновляемым источником энергии, который в перспективе реально может занять значительное место в топливно-энергетическом балансе ряда районов нашей страны. Разнообразие природных условий и наличие естественных проявлений нефти, газа и многочисленных источников термальных минеральных вод с древнейших времен привлекало внимание естествоиспытателей к недрам Дагестана.

Одновременно местное население широко использовало термоминеральные источники не только для лечения недугов, но и для добычи поваренной соли, коммунальных нужд, выпечки хлеба и т.п. Широкой популярностью у местного населения пользовались Талгинские, Ахтынские, Каякентские, Каракайтагские, Рычальские, Истису, Ботлихские и многие другие термоминеральные источники.

Первые печатные сведения о термоминеральных водах Дагестана принадлежат русскому врачу И. Лериху, который дважды посещал Дагестан в начале ХVΙΙΙ в. Вслед за ним сведения о подземных водах Дагестана приводятся в трудах С. Г. Гмелина, Г. В. Абиха, И. Березина. Особый толчок к изучению подземных вод дало получение нефтяных фонтанов в Берикее в 1894 году и Каякенте в 1898 г. Вслед за этим Дагестан посещают такие крупные геологи, как Н. И. Барбот-де-Марни, К. П. Лысенко, В. И. Меллер, А. М. Коншин, А. А. Булгаков, К. В. Харичков, И. Н. Стрижов и др., в трудах которых имеется ряд интересных сведений и мыслей о подземных водах Дагестана. Однако вся гидрогеологическая информация до 20-х годов ХХ в. Носит эпизодический, разрозненный характер.


Рис 2. Принципиальная интегрированная схема использования геотермальных вод

1 - добывающая скважина; 2 - выработка электроэнергии; 3 - холодильные процессы; 4 - теплицы; 5 - тепловая насосная установка; 6 - промышленные процессы; 7 - лесопильные предприятия; 8 - производство продуктов питания; 9 - дегидратация; 10 - сушка зерна; 11 - корм скота; 12 - центральное отопление и горячее водоснабжение; 13 - обогрев почвы и полив сельхозугодий; 14 - рыборазведение; 15 - химическое производство; 16 - бальнеолечение и бассейны; 17 - нагнетательная скважина

Исследования в широком масштабе стали проводиться только после победы Октябрьской революции. Большое внимание в эти годы уделяется изучению минеральных вод, лечебных грязей и развитию на их базе курортного строительства. В этот период были изучены источники, заслуживающие особого внимания по своим природным и бальнеологическим факторам: Талгинские, Зурамакентские, Каякентские, Истису и рассольные йодо-бромные воды Берикейского, Дузлакского, Дагогнинского месторождений и др. С выходом в 1963г. Постановления Совета Министров СССР "О развитии работ по использованию в народном хозяйстве глубинного тепла Земли" в г. Махачкале наступает качественно новый этап в освоении геотермальных ресурсов.

Новый промышленный этап освоения термальных вод вызвал на первых порах особенно высокий энтузиазм. Объясняется он тем, что с помощью ликвидированных скважин удалось без существенных затрат реализовать в значительных количествах термальные воды. Резко выросли объемы поисково-разведочных, буровых, ремонтно-восстановительных работ на газонефтяных скважинах, а также научных исследований по прогнозной оценке запасов, разработке методов против коррозии и солеотложений, комплексному использованию термальных вод в тепло-хладоснабжении, бальнеологии и т п.

Подсчитано, что на глубине до 5 км в недрах Земли количество сосредоточенной теплоты многократно превышает энергию, заключенную во всех ви­дах ископаемых энергоресурсов. В отдельных регионах, например, на Камчатке, в Исландии горячие воды изливаются на поверхность в виде гейзеров. Ныне доказано, что геотермальная энергия, получаемая за счет использования природного тепла земных недр, является наиболее перспективной и экологически безопасной среди возобновляе­мых видов энергии.

В настоящее время во многих странах мира (США, Россия, Ис­ландия и др.) для выработки электроэнергии и отопления зданий, по­догрева теплиц и парников используется тепло горячих источников. Теплоснабжение столицы Исландии Рейкьявика начиная с 1930 г. в основном осуществляется на основе геотермального тепла. Важно под­черкнуть при этом, что геотермальные электростанции (ГеоТЭС) по компоновке, оборудованию, эксплуатации мало отличаются от тради­ционных теплоэлектростанций.

В основном используют термальные воды неглубокого залегания с температурой 50-100°С. Так, скважина с суточным дебитом 1500 м 3 термальной воды (60°С) обеспечивает нужды в горячей воде поселка с населением 14 тыс. жителей. В северных широтах подземные термаль­ные воды используются для отопления жилищ, для лечебных целей, для выращивания овощей и даже фруктов в специальных оранжереях.

В искусственных геотермальных источниках в качестве рабочего тела применяют жидкость или газ, которые по пробуренным скважи­нам циркулируют в толще горных пород, имеющих высокие темпера­туры.

Например, в США проводятся эксперименты по закачке холод­ной воды в скважины, пробуренные до глубины 4 км в зону горячих, но трещиноватых и потому безводных пород. Примерно 3/5 закачива­емой воды через другие скважины поступает на поверхность, но уже в виде горячего пара. Этот пар может не только вырабатывать электро­энергию, приводя в движение турбины, но и использоваться для цен­трального отопления. Подобные эксперименты проводятся и в других странах.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет промышленной экологии
Наиболее массированный вред природной среде наносят промыш­ленные предприятия, энергетика и автомобильный транспорт - неотъемлемые компоненты урбанизированных и техногенно нагруженных территорий. Э

Стратегии мирового развития с учетом экологических ограничений
Обусловленные техногенной деятельностью изменения природной среды бумерангом вернулись и к их первопричине - человеку, стали негативно сказываться на самых различных сторонах общественной жизни, вы

Ничто не даётся даром
Очевидно, что вышеприведенные законы не охватывают все сто­роны взаимодействия общества и природы. Тем не менее, будучи простыми, по форме, но глубокими по содержанию, они закладывают ос­нову нравс

Цивилизационная революция XXI века
Наиболее ощутимым в смысле воздействия на среду обитания че­ловека и достаточно хорошо изученным можно считать загрязнение окружающей среды. Оно непосредственно связано с научно-техничес­ким прогре

Природное топливо
Топливо - это горючее вещество, выделяющее при окислении тепловую энергию, используемую в дальнейшем непосредствен­но в технологических процессах или преобразуемую в другие виды энергии. Т

Искусственное топливо
К искусственным топливам относятся: кокс доменных печей, ис­кусственные горючие газы, моторное топливо и др. Кокс - твердый углеродистый остаток, образующийся п

Альтернативное углеродсодержащее топливо
В связи с постепенным истощением запасов нефти и угля, а также усилением загрязнения среды обитания вредными продуктами сгора­ния развернуты работы по поиску и применению альтернативного

Теплоэнергетика и ее воздействие на природную среду
Химическое загрязнение окружающей среды. При сжигании углеродсодержащего топлива (угля, нефти, газа и др.) оно неизбежно. Рассмот­рим особенности поступления вредных вещ

Гидроэнергетика и ее воздействие на природную среду
Гидроэлектростанции: достоинства и экологические проблемы. Страны СНГ обладают огромными гидроэнергоресурсами, которые оцениваются в 3,94 трлн кВтч/год, из них экономический по

Ядерная энергетика и экология
Радиационная обстановка на Земле за последние 60-70 лет подверглась существенным изменениям: к началу Второй мировой войны во всех странах мира имелось около 10-12 г полученного в чистом виде естес

Радиационный экологический контроль
Естественные и искусственные радиоактивные вещества равномерно распределены в окружающей среде (за исключением аномальных геологических и промышленных районов повышенной радиоактивности) и являются

Территории повышенной радиоактивной загрязненности среды от проведения ядерных взрывов
В конце 1942 г. на территории Чикагского университета, в помещении зала под трибунами университетского стадиона, началась подготовка к пуску первого в мире ядерного реактора. Установка массой в нес

Особенности радиоэкологического загрязнения
В естественных природных условиях радиационное загрязнение среды, как правило, сочетается с воздействием и других техногенных факторов, прежде всего химического загрязнения. В силу этого вычленить


Помимо широкого использования невозобновляемых источников энергии (уголь, нефть, газ, ядерное топливо) активно изучается и реа­лизуется возможность получения энергии за счет альтернативных (не­трад

Использование солнечной энергии
Мощность солнечной энергии, поступающей на поверхность Зем­ли, оценивается в 20 млрд кВт, что эквивалентно 1,2-1014 т условного топлива в год. Для сравнения: мировые запасы органического

Энергия океанов и морей
Экологически чистая энергия морей и океанов может быть исполь­зована в волновых электростанциях (ВолнЭС), электростанциях мор­ских течений (ЭСМТ) и приливных электростанциях (ПЭС), где про­исходит

Ветроэнергетика
Энергия ветра в конечном итоге есть результат тепловых процессов, происходящих в атмосфере планеты. Причина активных процессов пе­ремещения воздушных масс заключается в различии плотностей нагре­то

Биоэнергетика
Биоэнергетикаоснована на получении биомассы, которая исполь­зуется в качестве топлива непосредственно или после соответствую­щей переработки. При этом выделяют три направления получения теп­

Водородная энергетика
Огромный интерес к водороду как к перспективному топливу обус­ловлен рядом неоспоримых его преимуществ, главные из которых та­ковы: 1) экологическая безопасность водорода в отличие от других топ-ли


В настоящее время удовлетворение потребностей в топливно-энергетических ресурсах нашей страны, обеспечение рациональной структуры топливно-энергетического баланса страны, поиск дополнительных источ

Приоритеты в развитии автономной и возобновляемой энергетики
В условиях Республики Беларусь достаточно эффективным может быть использование различных видов возобновляемых источников энергии, на базе которых могут быть созданы различные энергетические установ

Структура и виды транспорта
Транспорт, с помощью которого осуществляется перемещение гру­зов и пассажиров, играет уникальную роль, связывая все важнейшие сферы материального производства в единую систему хозяйственной деятель

Экологическое воздействие транспорта на природную среду и человека
Отчуждение земель. Естественно, что для размещения транспорт­ных коммуникаций нужны земля, вода, воздух, подчас огромных пло­щадей и объемов. Подсчитано, что в США площадь земель,

Сокращение выбросов автотранспорта, работающего на углеводородном топливе
Автомобильными двигателями выделяются в воздух городов более 95% оксида углерода, около 65% углеводородов и 30% оксидов азота. Расплачиваться за это приходится ухудшением здоровья людей как собстве

Планировочно-градостроительные мероприятия
Они включают специальные приемы застройки и озеленение ав­томагистралей, размещение жилой застройки по принципу зонирова­ния (в первом эшелоне застройки – от магистрали – размещаются здания понижен

Технологические мероприятия
Совершенствование двигателей внутреннего сгорания (ДВС) с искро­вым зажиганием. Известно, что наибольшее влияние на токсичность отработанных газов оказывают изменения, в

Санитарно-технические мероприятия
К таковым относится прежде всего установка каталитических нейтрализаторов. Они используются для обезвреживания выхлопных га­зов автомобиля путем химического превращения отдельных вредных веществ, с

Ужесточение стандартов на токсичность выхлопных газов
Исходя из понимания глобальной опасности стремительно разви­вающегося автотранспорта, еще 20 марта 1958 г. под эгидой ООН было достигнуто международное соглашение «О принятии единообразных условий

Новые виды топлива и транспорта
К таковому обычно относят различные спирты (метанол и этанол) и водород. Спирты.В ряде стран, особенно располагающих обширными план­тациями сахарного тростника, все в

Разработка альтернативных видов автотранспорта
К таковым относятся прежде всего электромобиль, солнечный электрический автомобиль, автомобиль с инерционным двигателем, автомобиль с гибридным двигателем. Электромобили

Природный горно-промышленный комплекс – объект изучения горной экологии
Источниками воздействия горного производства на окружающую природную среду являются открытые и под­земные горные работы, обогатительные фабрики, отвалы и хвостохранилища и др. Масштабы этого воздей

Воздействие горного производства на окружающую среду
Для всех способов разработки месторождений харак­терно воздействие на биосферу, затрагивающее практически все ее элементы: водный и воздушный бассейны, землю, не­дра, растительный и животный мир.

Охрана воздушного бассейна в горнодобывающей промышленности
Горное производство вызывает два вида загрязнений атмосферного воздуха: запыленность и загазованность. Ко­личество выбросов, их объем и вещественный состав опре­деляются источниками загрязнения. В

Влияние горного производства на гидросферу
Воздействие горного производства на водный бассейн проявляется в изменении водного режима, загрязнении и за­сорении вод. Изменение водного режима.При строительстве и э

Охрана водного бассейна в горном производстве
Под охраной водного бассейна (природных вод) пони­мается соблюдение установленного порядка пользования водами, т.е. обеспечение рационального управляемого ис­пользования, сохранения и восполнения и

Создание противофильтрационных завес
Вотличие от традиционных методов осушения месторождений полезных ископаемых, когда срабатываются статические и динамиче­ские ресурсы подземных вод, метод создания противофильт­рационных завес разли

Влияние горного производства на природный ландшафт
Специфическая особенность размещения предприятий горной промышленности заключается в том, что они могут создаваться только там, где имеются залежи полезных иско­паемых. При этом горные предприятия

Безотходное горное производство
Горное производство образует твердые, жидкие и газо­образные отходы (табл.6.3.) Большое количество отходов является наиболее объек­тивным показателем несовершенства проектируемой или приме


Все отрасли промышленности являются загрязнителями природной среды, отличаясь лишь ассортиментом, степенью опасности и объемом выбросов (сбросов), а также количеством твердых токсичных отходов (таб

Черная и цветная металлургия
По объему загрязнений одно из первых мест в народном хозяйстве занимает черная и цветная металлургия, металлообрабатывающая промышленность. Производство чугуна и стали сопровождается образованием б

Химическая и нефтехимическая промышленность
Химическая промышленность. На втором месте после металлургического производства по уровню негативного воздействия на окружающую среду находятся отрасли химической промышле

Машиностроительная промышленность
Практически в любом городе, а тем более промышленном центре имеются предприятия машиностроения. В одном случае это единичные предприятия, в других - группа различных по специализации машино

Промышленность строительных материалов
Крупным источником твердых частиц, загрязняющих природную среду, являются цементные заводы, известковые печи, установки по производству магнезита, асфальта, печи обжига кирпича. Наибольшая

Проблемы природопользования в сельском хозяйстве
Сельскохозяйственное природопользование является одним из древнейших видов природопользования, непосредственно направленным на удовлетворение потребностей человека. Качество сельхозпродукции непоср

Экологизация промышленного производства
Для уменьшения неблагоприятного воздействия промышленности на окружающую среду необходимо предпринимать меры по оптимизации и экологизации промышленного производства. Экологизация промышле

Основные пути и методы очистки сточных вод
Различают два основных пути очистки сточных вод: разбавление и очистка их от загрязнений. Разбавление не ликвидирует воздействия сточных вод, а лишь ослабляет его на локальном участке водоема. Осно

Экологически безопасные методы очистки промстоков
Термические методы. На химических предприятиях образуются сточные воды, содержащие различные минеральные соли (кальция, магния, натрия и др.), а также широкий спектр органических в

Очистка выбросов в атмосферу
Основным направлением охраны атмосферного воздуха от вредных выбросов должна быть разработка малоотходных и безотходных технологических процессов. Однако та­кую задачу следует полагать стратегическ

Основные принципы выбора метода и аппаратуры очистки газовых выбросов от твердых частиц и аэрозолей
Выбор метода и оборудования, обеспечива­ющих необходимую степень очистки, зависит от большого числа параметров, среди которых основным является эффективность работы си­стемы по отношению к преоблад

Очистка выбросов от токсичных газо- и парообразных примесей
С этой целью разработаны три основные группы методов очистки: 1) промывка выбросов растворителями содержащейся в них примеси (абсорбционный метод); 2) поглощение газообразных примесей твер­дыми тел

Реабилитация природных ландшафтов и нарушенных земель
Под мелиорацией понимается система организационно-хозяй­ственных и технических мероприятий, направленных на улучшение земель в целях создания наиболее благоприятных условий для разви­тия сельского

Виды отходов и масштабы их образования
Отходы производства и потребления - это остатки сырья, материалов, полуфабрикатов, иных изделий или продуктов, образовавшиеся в процессе производства и потребления, а также продукц

Обращение отходов
Обращение отходов - деятельность, в процессе которой обра­зуются отходы, а также деятельность по сбору, использованию, обезв­реживанию, транспортированию, размещению отходов.

Нормативы образования отходов и лимитов на их размещение
Суть этого вида экологического сопровождения деятельности пред­приятия состоит: · в установлении норматива образования отходов для действую­щего предприятия, исходя из анализа технологии п

Сбор, хранение и транспортировка отходов
Надлежащая организация сбора, хранения и транспортировки от­ходов вносит большой вклад в оздоровление ОС. В США, где норма накопления, например, твердых бытовых отходов (ТБО) в 2-3 раза выше, чем в

Полигоны для размещения твердых бытовых отходов
Закон «Об отходах производства и потребления» установил требования к объектам размещения отходов. Созда­ние таких объектов - специально оборудованных сооружений (поли­гонов, шламохранилищ, отвалов

Обращение токсичных промышленных отходов
Основными направлениями обращения твердых промышленных (ТПО) отходов являются: · захоронение на полигонах и свалках; · переработка конкретных твердых отходов по заводской техно­ло

Ресурсы нашей планеты не бесконечны. Используя в качестве главного источника энергии природные углеводороды, человечество рискует в один прекрасный момент обнаружить, что они исчерпаны, и прийти к глобальному кризису потребления привычных благ. XX век стал временем масштабных сдвигов в области энергетики. Ученые и экономисты в разных странах всерьез задумались о новых способах получения и возобновляемых источниках электричества и тепла. Наибольший прогресс был достигнут в области ядерных исследований, но появились интересные идеи, касающиеся полезного использования других природных явлений. Ученые давно узнали, что планета наша внутри горяча. Для получения пользы от глубинного тепла созданы геотермальные электростанции. В мире пока их немного, но, возможно, со временем станет больше. Каковы их перспективы, не опасны ли они и можно ли рассчитывать на высокую долю ГТЭС в общем объеме добываемой энергии?

Первые шаги

В дерзновенных поисках новых источников энергии ученые рассматривали множество вариантов. Изучались возможности освоения энергии приливов и отливов Мирового океана, преобразования солнечного света. Вспомнили и о старинных ветряных мельницах, снабдив их вместо каменных жерновов генераторами. Большой интерес представляют и геотермальные электростанции, способные вырабатывать энергию из тепла нижних раскаленных слоев земной коры.

В середине шестидесятых годов СССР не испытывал ресурсного дефицита, но энерговооруженность народного хозяйства, тем не менее, оставляла желать лучшего. Причина отставания от промышленно развитых стран в этой области состояла не в недостатке угля, нефти или мазута. Огромные расстояния от Бреста до Сахалина затрудняли доставку энергии, она становилась очень дорогой. Советские ученые и инженеры предлагали самые смелые решения этой задачи, и некоторые из них воплощались в жизнь.

В 1966 году на Камчатке заработала Паужетская геотермальная электростанция. Ее мощность составила довольно скромную цифру в 5 мегаватт, но этого вполне хватало для снабжения близлежащих населенных пунктов (поселков Озерновского, Шумного, Паужетки, сел Усть-Большерецкого р-на) и промышленных предприятий, главным образом рыбоконсервных заводов. Станция была экспериментальной, и сегодня можно смело утверждать, что опыт удался. В качестве источников тепла используются вулканы Камбальный и Кошелев. Преобразование осуществляли две установки турбогенераторного типа, первоначально по 2,5 МВт. Через четверть века установленную мощность удалось поднять до 11 МВт. Старое оборудование полностью исчерпало свой ресурс только в 2009 году, после чего была произведена полная реконструкция, включавшая и прокладку дополнительных трубопроводов теплоносителя. Опыт успешной эксплуатации побудил энергетиков строить и другие геотермальные электростанции. В России их сегодня пять.

Как работает

Исходные данные: в глубине земной коры есть тепло. Его нужно преобразовать в энергию, например, электрическую. Как это сделать? Принцип работы геотермальной электростанции достаточно прост. Под землю закачивается вода через специальную скважину, называемую входной или нагнетающей (по-английски injection, то есть "впрыск"). Для того чтобы определить подходящую глубину, требуется геологическое исследование. Вблизи нагретых магмой слоев, в конечном счете, должен образоваться подземный проточный бассейн, играющий роль теплообменника. Вода сильно нагревается и превращается в пар, который через другую скважину, (рабочую или эксплуатационную) подается на лопасти турбины, сопряженной с осью генератора. На первый взгляд, все выглядит очень просто, но на практике геотермальные электростанции устроены куда сложнее и имеют различные особенности конструкции, обусловленные эксплуатационными проблемами.

Достоинства геотермальной энергетики

Этот способ получения энергии имеет неоспоримые плюсы. Во-первых, геотермальные электростанции не требуют топлива, запасы которого лимитированы. Во-вторых, эксплуатационные расходы сведены к издержкам на технически регламентированные работы по плановой замене комплектующих изделий и обслуживанию технологического процесса. Срок окупаемости вложений составляет несколько лет. В-третьих, такие станции условно можно считать экологически чистыми. Есть, правда, в этом пункте и острые моменты, но о них позже. В-четвертых, дополнительной энергии для технологических нужд не требуется, насосы и другие приемники энергии запитываются от добываемых ресурсов. В-пятых, установка, помимо работы по прямому назначению, может производить опреснение воды Мирового океана, на берегу которого обычно строятся геотермальные электростанции. Плюсы и минусы присутствуют, однако, и в этом случае.

Недостатки

На фотографиях все выглядит просто чудесно. Корпуса и установки эстетичны, над ними не поднимаются клубы черного дыма, только белый пар. Однако не все так прекрасно, как кажется. Если геотермальные электростанции расположены поблизости населенных пунктов, жителям окрестностей досаждает производимый предприятиями шум. Но это лишь видимая (вернее, слышимая) часть проблемы. При бурении глубоких скважин никогда нельзя предвидеть, что именно из них пойдет. Это может быть токсичный газ, минеральные воды (не всегда лечебные) или даже нефть. Разумеется, если геологи наткнутся на пласт полезных ископаемых, то это даже хорошо, но такое открытие вполне может полностью изменить привычный уклад жизни местных жителей, поэтому разрешение на проведение даже исследовательских работ региональные власти дают крайне неохотно. Вообще выбрать место для ГТЭС довольно сложно, ведь в результате ее эксплуатации вполне может возникнуть провал грунта. Условия внутри земной коры меняются, и если источник тепла утратит со временем свой тепловой потенциал, затраты на строительство окажутся напрасными.

Как выбрать место

Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.

Следует учитывать, что наличие геологически активных зон - непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.

Следующий важный момент - наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.

Камчатка

Россия богата всеми видами природных ресурсов, но это не означает, что в бережном отношении к ним нет нужды. Геотермальные электростанции в России строят, причем в последние десятилетия все более активно. Они частично обеспечивают потребность энергообеспечения отдаленных районов Камчатки и Курил. Помимо уже упомянутой Паужетской ГТЭС, на Камчатке в эксплуатацию введена 12-мегаваттная Верхне-Мутновская ГТЭС (1999). Намного мощней ее Мутновская геотермальная электростанция (80 МВт), расположенная возле того же вулкана. Вместе они обеспечивают более трети объема энергии, потребляемой регионом.

Курилы

Сахалинская область также пригодна для строительства геотермальных энергопроизводящих предприятий. Здесь их два: Менделеевская и Океанская ГТЭС.

Менделеевская ГТЭС предназначена для решения проблемы энергоснабжения острова Кунашир, на котором расположен поселок городского типа Южно-Курильск. Название свое станция получила не в честь великого русского химика: так называется островной вулкан. Строительство началось в 1993-м, через девять лет предприятие введено в строй. Первоначально мощность составляла 1,8 МВт, но после модернизации и запуска следующих двух очередей достигла пяти.

На Курилах, на острове Итуруп, в том же 1993 году была заложена еще одна ГТЭС, получившая название «Океанская». Заработала она в 2006-м, через год вышла на проектную мощность в 2,5 МВт.

Мировой опыт

Русские ученые и инженеры стали пионерами во многих отраслях прикладной науки, но геотермальные электростанции изобрели все же за рубежом. Первая в мире ГТЭС (250 кВт) была итальянской, начала свою работу в 1904 году, ее турбина вращалась паром, выходящим из природного источника. До этого подобные явления использовались только в лечебно-курортных целях.

В настоящее время позиции России в области использования геотермального тепла также нельзя назвать передовыми: ничтожный процент вырабатываемого в стране электричества приходится на пять станций. Самое большое значение эти альтернативные источники имеют для экономики Филиппин: на них приходится один киловатт из каждых пяти, производимых в республике. Продвинулись вперед и другие страны, в числе которых Мексика, Индонезия и США.

На просторах СНГ

На уровень развития геотермальной энергетики влияет в большей степени не технологическая «продвинутость» той или иной страны, а осознание ее руководством насущной необходимости в альтернативных источниках. Есть, конечно, и «ноу-хау», касающиеся способов борьбы с накипью в теплообменниках, способов управления генераторами и прочей электрической частью системы, но вся эта методология специалистам давно известна. Большую заинтересованность в строительстве ГеоТЭС в последние годы проявляют многие постсоветские республики. В Таджикистане изучают районы, являющие собой геотермальное богатство страны, идет строительство 25-мегаваттной станции «Джермахпюр» в Армении (Сюникская область), соответствующие исследования ведутся в Казахстане. Горячие источники Брестской области стали предметом интереса белорусских геологов: они начали пробные бурения двухкилометровой скважины Вычулковская. В общем, за геоэнергетикой, скорее всего, есть будущее.

Впрочем, и с теплом Земли обращаться нужно бережно. Ограничен и этот природный ресурс.

В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200–300 м.

С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03–0,05 Вт/м 2 , или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).

Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.

В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

В среднем температура с глубиной растёт на 2,5–3°C на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1°C.

Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150°C на 1 км, а в Южной Африке - 6°C на 1 км.

Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250–300°C. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10°C/1 км, а далее геотермический градиент становится в 2–2,5 раза больше. На глубине 7 км зафиксирована уже температура 120°C, на 10 км - 180°C, а на 12 км - 220°C.

Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42°C, на 1,5 км - 70°C, на 2 км - 80°C, на 3 км - 108°C.

Предполагается, что геотермический градиент уменьшается начиная с глубины 20–30 км: на глубине 100 км предположительные температуры около 1300–1500°C, на глубине 400 км - 1600°C, в ядре Земли (глубины более 6000 км) - 4000–5000°C.

На глубинах до 10–12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сейсмических волн или температура изливающейся лавы.

Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20°C, то есть, как правило, более высокой, чем температура воздуха.

Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

Воды температурой от 20–30 до 100°C пригодны для отопления, температурой от 150°C и выше - и для выработки электроэнергии на геотермальных электростанциях.

В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull ) в 2010 году.

Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

«Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

Использование геотермальной энергии имеет весьма давнюю историю. Один из первых известных примеров - Италия, местечко в провинции Тоскана, ныне называемое Лардерелло, где ещё в начале XIX века местные горячие термальные воды, изливавшиеся естественным путём или добываемые из неглубоких скважин, использовались в энергетических целях.

Вода из подземных источников, богатая бором, употреблялась здесь для получения борной кислоты. Первоначально эту кислоту получали методом выпаривания в железных бойлерах, а в качестве топлива брали обычные дрова из ближайших лесов, но в 1827 году Франческо Лардерел (Francesco Larderel) создал систему, работавшую на тепле самих вод. Одновременно энергию природного водяного пара начали использовать для работы буровых установок, а в начале XX века - и для отопления местных домов и теплиц. Там же, в Лардерелло, в 1904 году термальный водяной пар стал энергетическим источником для получения электричества.

Примеру Италии в конце XIX-начале XX века последовали некоторые другие страны. Например, в 1892 году термальные воды впервые были использованы для местного отопления в США (Бойсе, штат Айдахо), в 1919-м - в Японии, в 1928-м - в Исландии.

В США первая электростанция, работавшая на гидротермальной энергии, появилась в Калифорнии в начале 1930-х годов, в Новой Зеландии - в 1958 году, в Мексике - в 1959-м, в России (первая в мире бинарная ГеоЭС) - в 1965-м.

Старый принцип на новом источнике

Выработка электроэнергии требует более высокой температуры гидроисточника, чем для отопления, - более 150°C. Принцип работы геотермальной электростанции (ГеоЭС) сходен с принципом работы обычной тепловой электростанции (ТЭС). По сути, геотермальная электростанция - разновидность ТЭС.

На ТЭС в роли первичного источника энергии выступают, как правило, уголь, газ или мазут, а рабочим телом служит водяной пар. Топливо, сгорая, нагревает воду до состояния пара, который вращает паровую турбину, а она генерирует электричество.

Отличие ГеоЭС состоит в том, что первичный источник энергии здесь - тепло земных недр и рабочее тело в виде пара поступает на лопасти турбины электрогенератора в «готовом» виде прямо из добывающей скважины.

Существуют три основные схемы работы ГеоЭС: прямая, с использованием сухого (геотермального) пара; непрямая, на основе гидротермальной воды, и смешанная, или бинарная.

Применение той или иной схемы зависит от агрегатного состояния и температуры энергоносителя.

Самая простая и потому первая из освоенных схем - прямая, в которой пар, поступающий из скважины, пропускается непосредственно через турбину. На сухом пару работала и первая в мире ГеоЭС в Лардерелло в 1904 году.

ГеоЭС с непрямой схемой работы в наше время самые распространённые. Они используют горячую подземную воду, которая под высоким давлением нагнетается в испаритель, где часть её выпаривается, а полученный пар вращает турбину. В ряде случаев требуются дополнительные устройства и контуры для очистки геотермальной воды и пара от агрессивных соединений.

Отработанный пар поступает в скважину нагнетания либо используется для отопления помещений, - в этом случае принцип тот же, что при работе ТЭЦ.

На бинарных ГеоЭС горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела с более низкой температурой кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой вращают турбину.


Принцип работы бинарной ГеоЭС. Горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела и имеющей менее высокую температуру кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой, в свою очередь, вращают турбину

Эта система замкнута, что решает проблемы выбросов в атмосферу. Кроме того, рабочие жидкости со сравнительно низкой температурой кипения позволяют использовать в качестве первичного источника энергии и не очень горячие термальные воды.

Во всех трёх схемах эксплуатируется гидротермальный источник, но для получения электричества можно использовать и петротермальную энергию.

Принципиальная схема в этом случае также достаточно проста. Необходимо пробурить две соединяющиеся между собою скважины - нагнетательную и эксплуатационную. В нагнетательную скважину закачивается вода. На глубине она нагревается, затем нагретая вода или образовавшийся в результате сильного нагрева пар по эксплуатационной скважине подаётся на поверхность. Далее всё зависит от того, как используется петротермальная энергия - для отопления или для производства электроэнергии. Возможен замкнутый цикл с закачиванием отработанного пара и воды обратно в нагнетательную скважину либо другой способ утилизации.


Схема работы петротермальной системы. Система основана на использовании температурного градиента между поверхностью земли и её недрами, где температура выше. Вода с поверхности закачивается в нагнетательную скважину и нагревается на глубине, далее нагретая вода или образовавшийся в результате нагрева пар подаются на поверхность по эксплуатационной скважине.

Недостаток такой системы очевиден: для получения достаточно высокой температуры рабочей жидкости нужно бурить скважины на большую глубину. А это серьёзные затраты и риск существенных потерь тепла при движении флюида вверх. Поэтому петротермальные системы пока менее распространены по сравнению с гидротермальными, хотя потенциал петротермальной энергетики на порядки выше.

В настоящее время лидер в создании так называемых петротермальных циркуляционных систем (ПЦС) - Австралия. Кроме того, это направление геотермальной энергетики активно развивается в США, Швейцарии, Великобритании, Японии.

Подарок лорда Кельвина

Изобретение в 1852 году теплового насоса физиком Уильямом Томпсоном (он же - лорд Кельвин) предоставило человечеству реальную возможность использования низкопотенциального тепла верхних слоёв грунта. Теплонасосная система, или, как её называл Томпсон, умножитель тепла, основана на физическом процессе передачи тепла от окружающей среды к хладагенту. По сути, в ней используют тот же принцип, что и в петротермальных системах. Отличие - в источнике тепла, в связи с чем может возникнуть терминологический вопрос: насколько тепловой насос можно считать именно геотермальной системой? Дело в том, что в верхних слоях, до глубин в десятки-сотни метров, породы и содержащиеся в них флюиды нагреваются не глубинным теплом земли, а солнцем. Таким образом, именно солнце в данном случае - первичный источник тепла, хотя забирается оно, как и в геотермальных системах, из земли.

Работа теплового насоса основана на запаздывании прогрева и охлаждения грунта по сравнению с атмосферой, в результате чего образуется градиент температур между поверхностью и более глубокими слоями, которые сохраняют тепло даже зимой, подобно тому, как это происходит в водоёмах. Основное назначение тепловых насосов - обогрев помещений. По сути - это «холодильник наоборот». И тепловой насос, и холодильник взаимодействуют с тремя составляющими: внутренней средой (в первом случае - отапливаемое помещение, во втором - охлаждаемая камера холодильника), внешней средой - источником энергии и холодильным агентом (хладагентом), он же - теплоноситель, обеспечивающий передачу тепла или холода.

В роли хладагента выступает вещество с низкой температурой кипения, что позволяет ему отбирать тепло у источника, имеющего даже сравнительно низкую температуру.

В холодильнике жидкий хладагент через дроссель (регулятор давления) поступает в испаритель, где из-за резкого уменьшения давления происходит испарение жидкости. Испарение - эндотермический процесс, требующий поглощения тепла извне. В результате тепло из внутренних стенок испарителя забирается, что и обеспечивает охлаждающий эффект в камере холодильника. Далее из испарителя хладагент засасывается в компрессор, где он возвращается в жидкое агрегатное состояние. Это обратный процесс, ведущий к выбросу отнятого тепла во внешнюю среду. Как правило, оно выбрасывается в помещение, и задняя стенка холодильника сравнительно тёплая.

Тепловой насос работает практически так же, с той разницей, что тепло забирается из внешней среды и через испаритель поступает во внутреннюю среду - систему отопления помещения.

В реальном тепловом насосе вода нагревается, проходя по внешнему контуру, уложенному в землю или водоём, далее поступает в испаритель.

В испарителе тепло передаётся во внутренний контур, заполненный хладагентом с низкой температурой кипения, который, проходя через испаритель, переходит из жидкого состояния в газообразное, забирая тепло.

Далее газообразный хладагент попадает в компрессор, где сжимается до высокого давления и температуры, и поступает в конденсатор, где происходит теплообмен между горячим газом и теплоносителем из системы отопления.

Для работы компрессора требуется электроэнергия, тем не менее коэффициент трансформации (соотношение потребляемой и вырабатываемой энергии) в современных системах достаточно высок, чтобы обеспечить их эффективность.

В настоящее время тепловые насосы довольно широко используются для отопления помещений, главным образом, в экономически развитых странах.

Экокорректная энергетика

Геотермальная энергетика считается экологически чистой, что в целом справедливо. Прежде всего, в ней используется возобновляемый и практически неисчерпаемый ресурс. Геотермальная энергетика не требует больших площадей, в отличие от крупных ГЭС или ветропарков, и не загрязняет атмосферу, в отличие от углеводородной энергетики. В среднем ГеоЭС занимает 400 м 2 в пересчёте на 1 ГВт вырабатываемой электроэнергии. Тот же показатель для угольной ТЭС, к примеру, составляет 3600 м 2 . К экологическим преимуществам ГеоЭС относят также низкое водопотребление - 20 литров пресной воды на 1 кВт, тогда как для ТЭС и АЭС требуется около 1000 литров. Отметим, что это экологические показатели «среднестатистической» ГеоЭС.

Но отрицательные побочные эффекты всё же имеются. Среди них чаще всего выделяют шум, тепловое загрязнение атмосферы и химическое - воды и почвы, а также образование твёрдых отходов.

Главный источник химического загрязнения среды - собственно термальная вода (с высокой температурой и минерализацией), нередко содержащая большие количества токсичных соединений, в связи с чем существует проблема утилизации отработанной воды и опасных веществ.

Отрицательные эффекты геотермальной энергетики могут прослеживаться на нескольких этапах, начиная с бурения скважин. Здесь возникают те же опасности, что и при бурении любой скважины: разрушение почвенно-растительного покрова, загрязнение грунта и грунтовых вод.

На стадии эксплуатации ГеоЭС проблемы загрязнения окружающей среды сохраняются. Термальные флюиды - вода и пар - обычно содержат углекислый газ (CO 2), сульфид серы (H 2 S), аммиак (NH 3), метан (CH 4), поваренную соль (NaCl), бор (B), мышьяк (As), ртуть (Hg). При выбросах во внешнюю среду они становятся источниками её загрязнения. Кроме того, агрессивная химическая среда может вызывать коррозионные разрушения конструкций ГеоТЭС.

В то же время выбросы загрязняющих веществ на ГеоЭС в среднем ниже, чем на ТЭС. Например, выбросы углекислого газа на каждый киловатт-час выработанной электроэнергии составляют до 380 г на ГеоЭС, 1042 г - на угольных ТЭС, 906 г - на мазутных и 453 г - на газовых ТЭС.

Возникает вопрос: что делать с отработанной водой? При невысокой минерализации она после охлаждения может быть сброшена в поверхностные воды. Другой путь - закачивание её обратно в водоносный пласт через нагнетательную скважину, что предпочтительно и преимущественно применяется в настоящее время.

Добыча термальной воды из водоносных пластов (как и выкачивание обычной воды) может вызывать просадку и подвижки грунта, другие деформации геологических слоёв, микроземлетрясения. Вероятность таких явлений, как правило, невелика, хотя отдельные случаи зафиксированы (например, на ГеоЭС в Штауфен-им-Брайсгау в Германии).

Следует подчеркнуть, что большая часть ГеоЭС расположена на сравнительно малонаселённых территориях и в странах третьего мира, где экологические требования бывают менее жёсткими, чем в развитых странах. Кроме того, на данный момент количество ГеоЭС и их мощности сравнительно невелики. При более масштабном развитии геотермальной энергетики экологические риски могут возрасти и умножиться.

Почём энергия Земли?

Инвестиционные затраты на строительство геотермальных систем варьируют в очень широком диапазоне - от 200 до 5000 долларов на 1 кВт установленной мощности, то есть самые дешёвые варианты сопоставимы со стоимостью строительства ТЭС. Зависят они, прежде всего, от условий залегания термальных вод, их состава, конструкции системы. Бурение на большую глубину, создание замкнутой системы с двумя скважинами, необходимость очистки воды могут многократно увеличивать стоимость.

Например, инвестиции в создание петротермальной циркуляционной системы (ПЦС) оцениваются в 1,6–4 тыс. долларов на 1 кВт установленной мощности, что превышает затраты на строительство атомной электростанции и сопоставимо с затратами на строительство ветряных и солнечных электростанций.

Очевидное экономическое преимущество ГеоТЭС - бесплатный энергоноситель. Для сравнения - в структуре затрат работающей ТЭС или АЭС на топливо приходится 50–80% или даже больше, в зависимости от текущих цен на энергоносители. Отсюда ещё одно преимущество геотермальной системы: расходы при эксплуатации более стабильны и предсказуемы, поскольку не зависят от внешней конъюнктуры цен на энергоносители. В целом эксплуатационные затраты ГеоТЭС оцениваются в 2–10 центов (60 коп.–3 руб.) на 1 кВт·ч произведённой мощности.

Вторая по величине после энергоносителя (и весьма существенная) статья расходов - это, как правило, заработная плата персонала станции, которая может кардинально различаться по странам и регионам.

В среднем себестоимость 1 кВт·ч геотермальной энергии сопоставима с таковой для ТЭС (в российских условиях - около 1 руб./1 кВт·ч) и в десять раз выше себестоимости выработки электроэнергии на ГЭС (5–10 коп./1 кВт·ч).

Отчасти причина высокой себестоимости заключается в том, что, в отличие от тепловых и гидравлических электростанций, ГеоТЭС имеет сравнительно небольшую мощность. Кроме того, необходимо сравнивать системы, находящиеся в одном регионе и в сходных условиях. Так, например, на Камчатке, по оценкам экспертов, 1 кВт·ч геотермальной электроэнергии обходится в 2–3 раза дешевле электроэнергии, произведённой на местных ТЭС.

Показатели экономической эффективности работы геотермальной системы зависят, например, и от того, нужно ли утилизировать отработанную воду и какими способами это делается, возможно ли комбинированное использование ресурса. Так, химические элементы и соединения, извлечённые из термальной воды, могут дать дополнительный доход. Вспомним пример Лардерелло: первичным там было именно химическое производство, а использование геотермальной энергии первоначально носило вспомогательный характер.

Форварды геотермальной энергетики

Геотермальная энергетика развивается несколько иначе, чем ветряная и солнечная. В настоящее время она в существенно большей степени зависит от характера самого ресурса, который резко различается по регионам, а наибольшие концентрации привязаны к узким зонам геотермических аномалий, связанных, как правило, с районами развития тектонических разломов и вулканизма.

Кроме того, геотермальная энергетика менее технологически ёмкая по сравнению с ветряной и тем более с солнечной энергетикой: системы геотермальных станций достаточно просты.

В общей структуре мирового производства электроэнергии на геотермальную составляющую приходится менее 1%, но в некоторых регионах и странах её доля достигает 25–30%. Из-за привязки к геологическим условиям значительная часть мощностей геотермальной энергетики сосредоточена в странах третьего мира, где выделяются три кластера наибольшего развития отрасли - острова Юго-Восточной Азии, Центральная Америка и Восточная Африка. Два первых региона входят в Тихоокеанский «огненный пояс Земли», третий привязан к Восточно-Африканскому рифту. С наибольшей вероятностью геотермальная энергетика и далее будет развиваться в этих поясах. Более отдалённая перспектива - развитие петротермальной энергетики, использующей тепло слоёв земли, лежащих на глубине нескольких километров. Это практически повсеместно распространённый ресурс, но его извлечение требует высоких затрат, поэтому петротермальная энергетика развивается прежде всего в наиболее экономически и технологически мощных странах.

В целом, учитывая повсеместное распространение геотермальных ресурсов и приемлемый уровень экологической безопасности, есть основания предполагать, что геотермальная энергетика имеет хорошие перспективы развития. Особенно при нарастании угрозы дефицита традиционных энергоносителей и росте цен на них.

От Камчатки до Кавказа

В России развитие геотермальной энергетики имеет достаточно давнюю историю, и по ряду позиций мы находимся в числе мировых лидеров, хотя в общем энергобалансе огромной страны доля геотермальной энергии пока ничтожно мала.

Пионерами и центрами развития геотермальной энергетики в России стали два региона - Камчатка и Северный Кавказ, причём если в первом случае речь идёт прежде всего об электроэнергетике, то во втором - об использовании тепловой энергии термальной воды.

На Северном Кавказе - в Краснодарском крае, Чечне, Дагестане - тепло термальных вод для энергетических целей использовалось ещё до Великой Отечественной войны. В 1980–1990-е годы развитие геотермальной энергетики в регионе по понятным причинам застопорилось и пока из состояния стагнации не вышло. Тем не менее геотермальное водоснабжение на Северном Кавказе обеспечивает теплом около 500 тыс. человек, а, например, город Лабинск в Краснодарском крае с населением 60 тыс. человек полностью отапливается за счёт геотермальных вод.

На Камчатке история геотермальной энергетики связана, прежде всего, со строительством ГеоЭС. Первые из них, до сих пор работающие Паужетская и Паратунская станции, были построены ещё в 1965–1967 годах, при этом Паратунская ГеоЭС мощностью 600 кВт стала первой станцией в мире с бинарным циклом. Это была разработка советских учёных С. С. Кутателадзе и А. М. Розенфельда из Института теплофизики СО РАН, получивших в 1965 году авторское свидетельство на извлечение электроэнергии из воды с температурой от 70°C. Эта технология впоследствии стала прототипом для более 400 бинарных ГеоЭС в мире.

Мощность Паужетской ГеоЭС, введённой в эксплуатацию в 1966 году, изначально составляла 5 МВт и впоследствии была наращена до 12 МВт. В настоящее время на станции идёт строительство бинарного блока, который увеличит её мощность ещё на 2,5 МВт.

Развитие геотермальной энергетики в СССР и России тормозилось доступностью традиционных энергоносителей - нефти, газа, угля, но никогда не прекращалось. Крупнейшие на данный момент объекты геотермальной энергетики - Верхне-Мутновская ГеоЭС с суммарной мощностью энергоблоков 12 МВт, введённая в эксплуатацию в 1999 году, и Мутновская ГеоЭС мощностью 50 МВт (2002 год).

Мутновская и Верхне-Мутновская ГеоЭС - уникальные объекты не только для России, но и в мировом масштабе. Станции расположены у подножия вулкана Мутновский, на высоте 800 метров над уровнем моря, и работают в экстремальных климатических условиях, где 9–10 месяцев в году зима. Оборудование Мутновских ГеоЭС, на данный момент одно из самых современных в мире, полностью создано на отечественных предприятиях энергетического машиностроения.

В настоящее время доля Мутновских станций в общей структуре энергопотребления Центрально-Камчатского энергетического узла составляет 40%. В ближайшие годы планируется увеличение мощности.

Отдельно следует сказать о российских петротермальных разработках. Крупных ПЦС у нас пока нет, однако есть передовые технологии бурения на большую глубину (порядка 10 км), которые также не имеют аналогов в мире. Их дальнейшее развитие позволит кардинально снизить затраты на создание петротермальных систем. Разработчики данных технологий и проектов - Н. А. Гнатусь, М. Д. Хуторской (Геологический институт РАН), А. С. Некрасов (Институт народнохозяйственного прогнозирования РАН) и специалисты Калужского турбинного завода. Сейчас проект петротермальной циркуляционной системы в России находится на экспериментальной стадии.

Перспективы у геотермальной энергетики в России есть, хотя и сравнительно отдалённые: на данный момент достаточно велик потенциал и сильны позиции традиционной энергетики. В то же время в ряде отдалённых районов страны использование геотермальной энергии экономически выгодно и востребовано уже сейчас. Это территории с высоким геоэнергетическим потенциалом (Чукотка, Камчатка, Курилы - российская часть Тихоокеанского «огненного пояса Земли», горы Южной Сибири и Кавказ) и одновременно удалённые и отрезанные от централизованного энергоснабжения.

Вероятно, в ближайшие десятилетия геотермальная энергетика в нашей стране будет развиваться именно в таких регионах.

Кирилл Дегтярев,
научный сотрудник, МГУ им. М. В. Ломоносова
«Наука и жизнь» №9, №10 2013

Введение

По запасам термальных вод Дагестан занимает первое место в Российской Федерации. Дагестан является уникальной геотермальной провинцией России. Широкомасштабному развитию здесь геотермии способствуют благоприятные геотермические и гидрогеологические условия крупного термоводоносного бассейна многопластового типа.

По термической напряженности недр территория Дагестана превосходит все известные осадочные бассейны СНГ, за исключением районов современного вулканизма.

Температуры на глубинах 3-6км здесь зафиксированы в 140-210?С, что на 80-100?С выше, чем в Азербайджане, Астраханской и Ростовской областях. В Дагестане уже много лет успешно функционируют системы геотермального теплоснабжения в городах Махачкала, Кизляр и Избербаш.

В геологическом отношении Дагестан располагается на стыке двух крупнейших геолого-тектонических структур (Кавказской геосинклинали и Русской платформы) и занимает юго-восточную часть Восточного Предкавказья.

Анализ геолого-тектонических, гидродинамических, гидрогеологических, геотермических, сейсмических и других природных условий позволил выделить на территории Дагестана четыре гидрогеотермических района: Сланцевого, Известнякового, Предгорного и Платформенного, которые в свою очередь подразделяются на более мелкие гидрогеологические структуры.

Задачей данной работы является исследование источников потенциала геотермальной энергии в Республике Дагестан.

Геотермальная энергетика

Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. В качестве носителей этой энергии могут выступать как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из горячих недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03Вт/мІ. Под воздействием этого потока, в зависимости от свойств горных пород, возникает градиент температуры - так называемая геотермальная ступень. В большинстве мест, геотермальная ступень составляет не более 2-3?С/100м.

Сегодня в качестве источников геотермальной энергии для получения тепла и/или для производства электроэнергии экономически целесообразно оказывается использовать лишь термальные воды и парогидротермы. Легкодоступных геотермальных месторождений с температурой более 100?С на земном шаре сравнительно немного.

Для производства электроэнергии с приемлемыми технико-экономическими показателями температура должна быть не ниже 100?С.

В настоящее время суммарная мощность действующих в мире геотермальных электростанций составляет около 10 ГВт(э). Суммарная мощность существующих геотермальных систем теплоснабжения оценивается примерно в 20 ГВт(э).

Основные проблемы геотермального теплоснабжения связаны с солеотложением и коррозионной стойкостью материалов и оборудования, работающих в условиях агрессивной среды.

С целью избегания загрязнения окружающей среды, рек и водоемов, извлекаемыми из недр земли минеральными соединениями современные технологии использования геотермальной энергии предусматривает обратную закачку отработавшего геотермального флюида в пласт.

Рис 1.

1-парогенератор? 2- накопитель пара? 3- турбина? 4- эжектор? 5- конденсатор? 6,7- насосы? ЭС- эксплуатационная скважина? НС- нагнетательная скважина.