Ядерный магнитный резонанс бентонитов. Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Использование контрастного вещества при ЯМР

Ядерный магнитный резонанс
Nuclear magnetic resonance

Ядерный магнитный резонанс (ЯМР) – резонансное поглощение электромагнитных волн атомными ядрами, происходящее при изменении ориентации векторов их собственных моментов количества движения (спинов). ЯМР возникает в образцах, помещённых в сильное постоянное магнитное поле, при одновременном воздействии на них слабого переменного электромагнитного поля радиочастотного диапазона (силовые линии переменного поля должны быть перпендикулярны силовым линиям постоянного поля). Для ядер водорода (протонов) в постоянном магнитном поле напряжённостью 10 4 эрстед резонанс наступает при частоте радиоволн 42.58 МГц. Для других ядер в магнитных полях 10 3 –10 4 эрстед ЯМР наблюдается в диапазоне частот 1–10 МГц. ЯМР широко используется в физике, химии и биохимии для исследования структуры твёрдых тел и сложных молекул. В медицине с помощью ЯМР с разрешением 0.5–1 мм получают пространственное изображение внутренних органов человека.

Рассмотрим явление ЯМР на примере простейшего ядра – водорода. Ядро водорода это протон, имеющий определённое значение собственного механического момента количества движения (спина). В соответствии с квантовой механикой вектор спина протона может иметь только два взаимно противоположных направления в пространстве, условно обозначаемых словами “вверх” и “вниз”. Протон имеет также и магнитный момент, направление вектора которого жёстко привязано к направлению вектора спина. Поэтому и вектор магнитного момента протона может быть направлен либо “вверх”, либо “вниз”. Таким образом, протон можно представить как микроскопический магнитик с двоякой возможной ориентацией в пространстве. Если поместить протон во внешнее постоянное магнитное поле, то энергия протона в этом поле будет зависеть от того, куда направлен его магнитный момент. Энергия протона будет больше в том случае, если его магнитный момент (и спин) направлен в сторону, противоположную полю. Эту энергию обозначим E ↓ . Если магнитный момент (спин) протона направлен в ту же сторону, что и поле, то энергия протона, обозначаемая E , будет меньше (E < E ↓). Пусть протон оказался именно в этом последнем состоянии. Если теперь протону добавить энергию Δ Е = E ↓ − E , то он сможет скачком перейти в состояние с большей энергией, в котором его спин будет направлен против поля. Добавить энергию протону можно, “облучая” его квантами электромагнитных волн с частотой ω, определяемой соотношением ΔЕ = ћω.
Перейдём от отдельного протона к макроскопическому образцу водорода, содержащему большое число протонов. Ситуация будет выглядеть так. В образце из-за усреднения случайных ориентаций спинов примерно равные количества протонов при наложении постоянного внешнего магнитного поля окажутся относительно этого поля со спинами, направленными “вверх” и “вниз”. Облучение образца электромагнитными волнами с частотой ω = (E ↓ − E )/ћ, вызовет “массовый” переворот спинов (магнитных моментов) протонов, в результате которого все протоны образца окажутся в состоянии со спинами, направленными против поля. Такой массовое изменение ориентации протонов будет сопровождаться резким (резонансным) поглощением квантов (и энергии) облучающего электромагнитного поля. Это и есть ЯМР. ЯМР можно наблюдать лишь в образцах с большим числом ядер (10 16), используя специальные методики и высокочувствительные приборы.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Спектроскопия ядерного ОФС.1.2.1.1.0007.15
магнитного резонанса Взамен ГФ
XII , ч.1,
ОФС 42-0046-07

Спектроскопия ядерного магнитного резонанса (ЯМР) – метод, основанный на поглощении радиочастотного электромагнитного излучения ядрами образца с ненулевым магнитным моментом, помещенного в постоянное магнитное поле (B 0). Ненулевые магнитные моменты имеют изотопы ядер элементов с нечетной атомной массой (1 H, 13 C, 15 N, 19 F, 31 P и др.).

Общие принципы

Вращающееся вокруг своей оси ядро имеет собственный момент количества движения (угловой момент, или спин) P . Магнитный момент ядра μ прямо пропорционален спину: μ = γ ∙ P (γ – коэффициент пропорциональности или гиромагнитное отношение). Угловой и магнитный моменты являются квантованными, т.е. могут находиться в одном из 2I + 1 спиновых состояний (I спиновое квантовое число ). Различные состояния магнитных моментов ядер обладают одинаковой энергией, если на них не действует внешнее магнитное поле. При помещении ядер во внешнее магнитное поле B 0 энергетическое вырождение ядер снимается и возникает возможность энергетического перехода с одного уровня на другой. Процесс распределения ядер между различными энергетическими уровнями протекает в соответствии с законом распределения Больцмана и приводит к появлению макроскопической равновесной продольной намагниченности М z . Время, которое требуется для создания М z после включения внешнего магнитного поля В 0 , называется временем продольной или спин решеточной релаксации (Т 1). Нарушение равновесного распределения ядер происходит под действием радиочастотного магнитного поля (B 1), перпендикулярного B 0 , которое вызывает дополнительные переходы между энергетическими уровнями, сопровождающиеся поглощением энергии (явление ядерного магнитного резонанса) . Частота ν 0 , при которой возникает поглощение энергии ядрами (Ларморова или резонансная частота поглощения ), изменяется в зависимости от величины постоянного поля B 0: ν 0 = γB 0 /2π. В момент резонанса происходит взаимодействие между индивидуальными ядерными магнитными моментами и полем В 1 , которое выводит вектор М z из его равновесного положения вдоль оси z . В результате появляется поперечная намагниченность М xy . Ее изменение, связанное с обменом внутри спиновой системы, характеризуется временем поперечной или спин-спиновой релаксации (Т 2).

Зависимость интенсивности поглощения энергии ядрами одного типа от частоты радиочастотного магнитного поля при фиксированном значении В 0 называется одномерным спектром ядерного магнитного резонанса ядра данного типа. Спектр ЯМР может быть получен двумя способами: при непрерывном облучении образца радиочастотным полем с изменяющейся частотой, в результате чего регистрируется непосредственно спектр ЯМР (спектроскопия с непрерывным облучением), или при воздействии на образец короткого радиочастотного импульса (импульсная спектроскопия ). В импульсной спектроскопии ЯМР регистрируется затухающее во времени когерентное излучение, испускаемое ядрами при возвращении в исходное спиновое состояние (сигнал спада свободной индукции ) с последующим преобразованием временной шкалы в частотную (Фурье-преобразование ).

В молекулах электроны атомов уменьшают величину действующего внешнего магнитного поля B 0 в месте нахождения ядра, т.е. проявляется диамагнитное экранирование :

B лок = B 0 ∙ (1 – σ),

B лок – напряженность результирующего поля;

σ – константа экранирования.

Разница в резонансных частотах сигналов ядер, равная разнице в их константах экранирования, называется химическим сдвигом сигналов, обозначается символом δ , измеряется в миллионных долях (м.д.). Взаимодействие магнитных моментов ядер через посредство электронов химической связи (спин-спиновое взаимодействие ) вызывает расщепление сигнала ЯМР (мультиплетность, m ). Количество компонент в мультиплетах определяется спином ядра и количеством взаимодействующих ядер. Мерой спин-спинового взаимодействия является константа спин-спинового взаимодействия (J , измеряется в герцах, Гц). Значения δ, m и J не зависят от величины постоянного магнитного поля.

Интенсивность сигнала ЯМР ядра в спектре определяется заселенностью его энергетических уровней. Из ядер с естественным содержанием изотопов наиболее интенсивные сигналы дают ядра водорода. На интенсивность сигналов ЯМР также влияет время продольно-поперечной релаксации (большие Т 1 ведут к уменьшению интенсивности сигнала).

Ширина сигналов ЯМР (разница между частотами на полувысоте сигнала) зависит от Т 1 и Т 2 . Малые времена T 1 и Т 2 обуславливают широкие и мало интерпретируемые сигналы спектра.

Чувствительность метода ЯМР (предельно обнаруживаемая концентрация вещества) зависит от интенсивности сигнала ядра. Для ядер 1 Н чувствительность составляет 10 -9 ÷ 10 -11 моль.

Корреляции различных спектральных параметров (например, химических сдвигов различных ядер в пределах одной молекулярной системы) могут быть получены гомо- и гетероядерными методами в формате 2D или 3D.

Прибор

Импульсный спектрометр ЯМР (ЯМР-спектрометр) с высокой разрешающей способностью состоит из:

  • магнита для создания постоянного магнитного поля B 0 ;
  • термостатируемого датчика с держателем образца для подачи радиочастотного импульса и определения излучения, испускаемого образцом;
  • электронного устройства для создания радиочастотного импульса, регистрации, усиления и преобразования сигнала спада свободной индукции в цифровую форму;
  • устройства для настройки и регулировки электронных контуров;
  • устройства сбора и обработки данных (компьютер);

и может также включать:

проточную кювету для проведения жидкостной хроматографии ядерного магнитного резонанса или проточно-инъекционного анализа;

  • систему для создания импульсного градиента магнитного поля.

Сильное магнитное поле генерируется катушкой сверхпроводимости в сосуде Дьюара, заполненном жидким гелием.

Следует проверять надлежащее функционирование ЯМР-спектрометра. Для проверки проводят соответствующие испытания, включающие, как правило, измерение ширины спектральной линии на полувысоте определенных пиков при определенных условиях (разрешение ), воспроизводимость положения сигнала и отношение сигнал/шум (отношение между интенсивностью определенного сигнала в спектре ЯМР и случайных колебаний в области спектра, не содержащего сигналов от анализируемого вещества, S /N ) для стандартных смесей. В программном обеспечении спектрометров имеются алгоритмы по определению S/N . Все изготовители приборов предоставляют спецификации и протоколы измерения этих параметров.

Спектроскопия ЯМР образцов в растворах

Методика

Испытуемый образец растворяют в растворителе, к которому может быть добавлен соответствующий эталон для калибровки химического сдвига, как указано в нормативной документации. Величина относительного химического сдвига ядра вещества (δ в-во) определяется следующим выражением:

δ в-во = (ν в-во – ν эталон)/ν прибора,

ν в-во – частота резонанса ядра вещества, Гц;

ν эталон – частота резонанса ядра эталона, Гц;

ν прибора – рабочая частота ЯМР-спектрометра (частота, на которой выполняются условия резонанса для ядер водорода при данном B 0 , МГц).

Для растворов в органических растворителях химический сдвиг в спектрах 1 H и 13 C измеряется относительно сигнала тетраметилсилана, положение которого принято за 0 м.д. Отсчет химических сдвигов ведется в сторону слабого поля (влево) от сигнала тетраметилсилана (дельта – шкала химических сдвигов). Для водных растворов в качестве эталона в спектрах ЯМР 1 H используется 2,2-диметил-2-силанпентан-5-сульфонат натрия, химический сдвиг протонов метильной группы которого равен 0,015 м.д. Для спектров 13 C водных растворов в качестве эталона используют диоксан, химический сдвиг которого равен 67,4 м.д.

При калибровке спектров 19 F в качестве первичного эталона с нулевым значением химического сдвига используют трифторуксусную кислоту или трихлорфторметан; спектров 31 P – 85 % раствор ортофосфорной кислоты или триметилфосфат; спектров 15 N – нитрометан либо насыщенный раствор аммиака. В 1 Н и 13 С ЯМР, как правило, используют внутренний эталон, который непосредственно прибавляют к испытуемому образцу. В 15 N, 19 F и 31 Р ЯМР часто используют внешний эталон, который находится отдельно в коаксиальной цилиндрической пробирке или капилляре.

При описании спектров ЯМР необходимо указывать растворитель, в котором растворено вещество, и его концентрацию. В качестве растворителей используют легкоподвижные жидкости, в которых для уменьшения интенсивности сигналов растворителей атомы водорода заменены атомами дейтерия. Дейтерированный растворитель выбирают, исходя из следующих критериев:

  • 1) растворимости в нем испытуемого соединения;
  • 2) отсутствия перекрывания сигналов остаточных протонов дейтерированного растворителя с сигналами испытуемого соединения;
  • 3) отсутствия взаимодействия между растворителем и испытуемым соединением, если не указано иначе.

Атомы растворителя дают сигналы, которые легко идентифицируются по их химическому сдвигу и могут использоваться для калибровки оси химического сдвига (вторичный эталон). Химические сдвиги сигналов остаточных протонов дейтерированных растворителей имеют следующие значения (м.д.): хлороформ — 7,26; бензол — 7,16; вода — 4,7; метанол -3,35 и 4,78; диметилсульфоксид — 2,50; ацетон — 2,05; положение сигнала воды и протонов гидроксильных групп спиртов зависит от pH среды и температуры.

Для количественного анализа растворы не должны содержать нерастворенных частиц. При некоторых количественных определениях может потребоваться добавление внутреннего стандарта для сравнения интенсивности испытуемого и стандартного образцов. Соответствующие стандартные образцы и их концентрации должны быть указаны в нормативной документации. После помещения образца в пробирку и укупорки образец вводят в магнит ЯМР-спектрометра, устанавливают параметры испытания (параметры настройки, регистрации, оцифровки сигнала спада свободной индукции). Основные параметры испытания, приводимые в нормативной документации, записывают или сохраняют в компьютере.

Для предотвращения дрейфа спектра во времени выполняют стабилизационную процедуру (дейтериевый лок), используя сигнал дейтерия, вызываемый дейтерированными растворителями, если не указано иначе. Прибор регулируют для получения наиболее оптимальных условий резонанса и максимального соотношения S/N (шиммирование ).

В ходе испытания возможно выполнение многократных последовательностей циклов «импульс – сбор данных – пауза» с последующим суммированием отдельных сигналов спада свободной индукции и усреднением уровня шума. Время задержки между импульсными последовательностями, в течение которого система ядерных спинов восстанавливает свою намагниченность (D 1), для количественных измерений должно превышать время продольной релаксации T 1: D 1 ≥ 5 T 1 . В программном обеспечении спектрометров имеются алгоритмы по определению T 1 . Если величина T 1 неизвестна, рекомендуется использовать значение D 1 = 25 c.

После проведения Фурье-преобразования сигналы в частотном представлении калибруют под выбранный эталон и измеряют их относительную интенсивность путем интегрирования – измерения отношения площадей резонансных сигналов. В спектрах 13 С интегрируют только однотипные сигналы. Точность интегрирования сигнала зависит от соотношения сигнал шум (S/N) :

где u (I ) – стандартная неопределенность интегрирования.

Число накоплений спада свободной индукции, необходимое для достижения удовлетворительного соотношения S / N , должно быть приведено в нормативной документации.

Наряду с одномерными в аналитических целях используют гомо- и гетероядерные двумерные корреляционные спектры, основанные на определенной последовательности импульсов (COSY, NOESY, ROESY, HSQC, HMBC, HETCOR, CIGAR, INADEQUATE и др.). В двумерных спектрах взаимодействие между ядрами проявляется в виде сигналов, называемых кросс-пиками. Положение кросс-пиков определяется значениями химических сдвигов двух взаимодействующих ядер. Двумерные спектры предпочтительно использовать для определения состава сложных смесей и экстрактов, т.к. вероятность наложения сигналов (кросс-пиков) в двумерных спектрах существенно ниже, чем вероятность наложения сигналов в одномерных спектрах.

Для быстрого получения спектров гетероядер (13 C, 15 N и др.) применяют методики (HSQC, HMBC), которые позволяют получать на ядрах 1 H спектры других ядер, используя механизмы гетероядерного взаимодействия.

Методика DOSY, основанная на регистрации потери фазовой когерентности ядерных спинов за счет трансляционных перемещений молекул под действием градиента магнитного поля, позволяет получать спектры индивидуальных соединений (спектральное разделение) в смеси без их физического разделения и определять размеры, степени агрегированности и молекулярные массы молекулярных объектов (молекул, макромолекул, молекулярных комплексов, супрамолекулярных систем).

Области применения

Многообразие структурной и аналитической информации, содержащейся в спектрах ядерного магнитного резонанса, позволяет использовать метод ядерного магнитного резонанса для проведения качественного и количественного анализа. Применение спектроскопии ядерного магнитного резонанса в количественном анализе основано на прямой пропорциональности молярной концентрации магнитно-активных ядер интегральной интенсивности соответствующего сигнала поглощения в спектре.

  1. Установление подлинности действующего вещества . Установление подлинности действующего вещества осуществляют путем сравнения спектра испытуемого образца со спектром стандартного образца или с опубликованным эталонным спектром. Спектры стандартных и испытуемых образцов должны быть получены с использованием одних и тех же методик и условий. Пики в сравниваемых спектрах должны совпадать по положению (отклонения значений δ испытуемого и стандартных образцов в пределах ± 0,1 м.д. для ядерного магнитного резонанса 1 Н и ± 0,5 м.д. для ядерного магнитного резонанса 13 С), интегральной интенсивности и мультиплетности, значения которых следует приводить при описании спектров. При отсутствии стандартного образца можно использовать фармакопейный стандартный образец, идентичность которого подтверждают самостоятельной структурной интерпретацией спектральных данных и альтернативными методами.

При подтверждении подлинности образцов нестехиометрического состава (например, природных полимеров переменного состава) допускают несовпадение пиков испытуемого и стандартных образцов по положению и интегральной интенсивности сигналов. Сравниваемые спектры должны быть подобны, т.е. содержать одинаковые характеристические области сигналов, подтверждающие совпадение фрагментного состава испытуемого и стандартных образцов.

Для установления подлинности смеси веществ (экстрактов) допускают использование одномерных спектров ЯМР целиком, как «отпечатков пальца» объекта, без детализации значений δ и мультиплетности отдельных сигналов. В случае использования двумерной спектроскопии ЯМР при описании спектров (фрагментов спектра), заявленных на подлинность, следует приводить значения кросс-пиков.

  1. Идентификация посторонних примесей/остаточных органических растворителей . Идентификацию посторонних примесей/остаточных органических растворителей осуществляют аналогично установлению подлинности действующего вещества, ужесточая требования к чувствительности и цифровому разрешению.
  2. Определение содержания посторонних примесей/остаточных органических растворителей относительно действующего вещества . Метод ЯМР является прямым абсолютным методом определения мольного соотношения действующего вещества и примесного соединения (n /n примесь):

где S и S примесь – нормированные значения интегральных интенсивностей сигналов действующего вещества и примеси.

Нормирование проводят по числу ядер в структурном фрагменте, обуславливающих измеряемый сигнал.

Массовую долю примеси/остаточного органического растворителя относительно действующего вещества (X пр) определяют по формуле:

M пр – молекулярная масса примеси;

M – молекулярная масса действующего вещества;

S пр – нормированное значение интегральной интенсивности сигнала примеси;

S’ – нормированное значение интегральной интенсивности сигнала действующего вещества.

  1. Количественное определение содержания вещества (действующего вещества, примеси/остаточного растворителя) в фармацевтической субстанции . Абсолютное содержание вещества в фармацевтической субстанции определяется методом внутреннего стандарта, в качестве которого выбирается вещество, сигналы которого находятся вблизи сигналов определяемого вещества, не перекрываясь с ними. Интенсивности сигналов определяемого вещества и стандарта не должны существенно различаться.

Процентное содержание определяемого вещества в испытуемом образце в пересчете на сухое вещество (X, % масс) вычисляют по формуле:

X, % масс = 100 ∙ (S ‘ /S ‘ 0) ∙ (M a 0 /M 0 ∙ a ) ∙ ,

S’ – нормированное значение интегральной интенсивности сигнала определяемого вещества;

S ‘ 0 – нормированное значение интегральной интенсивности сигнала стандарта;

M – молекулярная масса определяемого вещества;

M 0 – молекулярная масса;

a – навеска испытуемого образца;

a 0 – навеска вещества-стандарта;

W – содержание влаги, %.

В качестве веществ-стандартов можно использовать следующие соединения: малеиновая кислота (2H; 6,60 м.д., M = 116,07), бензилбензоат (2H; 5,30 м.д., M = 212,25), малоновая кислота (2H; 3,30 м.д., M = 104,03), сукцинимид (4H; 2,77 м.д., M = 99,09), ацетанилид (3H; 2,12 м.д., M = 135,16), трет -бутанол (9H; 1,30 м.д., M = 74,12).

Относительное содержание вещества как доля компонента в смеси компонентов фармацевтической субстанции определяется методом внутренней нормализации. Мольная (X моль) и массовая (X масс) доля компонента i в смеси n веществ определяется по формулам:

  1. Определение молекулярной массы белков и полимеров . Молекулярные массы белков и полимеров определяют сравнением их подвижности с подвижностью соединений-стандартов с известной молекулярной массой, используя методики DOSY. Измеряют коэффициенты самодиффузии (D ) испытуемых и стандартных образцов, строят график зависимости логарифмов молекулярных масс соединений-стандартов от логарифмов D . По полученному таким образом графику методом линейной регрессии определяют неизвестные молекулярные массы испытуемых образцов. Полное описание DOSY-эксперимента должно быть приведено в нормативной документации.

Спектроскопия ЯМР твердых веществ

Образцы в твердом состоянии анализируют с помощью специально оборудованных ЯМР-спектрометров. Определенные технические операции (вращение порошкообразного образца в роторе, наклоненном под магическим углом (54,7°) к оси магнитного поля В 0 , силовое распаривание, перенос поляризации от легковозбудимых ядер к менее поляризуемым ядрам – кросс-поляризация) позволяют получать спектры органических и неорганических соединений с высокой разрешающей способностью. Полное описание процедуры должно быть приведено в нормативной документации. Основная область применения данной разновидности спектроскопии ЯМР – изучение полиморфизма твёрдых лекарственных средств.

Ядерный магнитный резонанс (ЯМР) представляет собой ядерную спектроскопию, которая находит широкое применение во всех физических науках и промышленности. В ЯМР для зондирования собственных спиновых свойств атомных ядер используется большой магнит. Подобно любой спектроскопии, для создания перехода между энергетическими уровнями (резонанса) в ней применяется электромагнитное излучение (радиочастотные волны в диапазоне УКВ ). В химии ЯМР помогает определить структуру малых молекул. Ядерно-магнитный резонанс в медицине нашел применение в магнитно-резонансной томографии (МРТ).

Открытие

ЯМР был обнаружен в 1946 году учеными Гарвардского университета Перселем , Фунтом и Торри , а также Блохом , Хансеном и Паккардом из Стэнфорда. Они заметили, что ядра 1 H и 31 P (протон и фосфор-31) способны поглощать радиочастотную энергию при воздействии на них магнитного поля, сила которого специфична для каждого атома. При поглощении они начинали резонировать, каждый элемент на своей частоте. Это наблюдение позволило провести детальный анализ строения молекулы. С тех пор ЯМР нашел применение в кинетических и структурных исследованиях твердых тел, жидкостей и газов, в результате чего было присуждено 6 Нобелевских премий.

Спин и магнитные свойства

Ядро состоит из элементарных частиц, называемых нейтронами и протонами. Они обладают собственным моментом импульса, называемым спином. Подобно электронам, спин ядра можно описать квантовыми числами I и в магнитном поле m. Атомные ядра с четным числом протонов и нейтронов имеют нулевой спин, а все остальные - ненулевой. Кроме того, молекулы с ненулевым спином обладают магнитным моментом μ = γ I , где γ - гиромагнитное отношение, константа пропорциональности между магнитным дипольным моментом и угловым, разным у каждого атома.

Магнитный момент ядра заставляет его ​​вести себя как крошечный магнит. В отсутствие внешнего магнитного поля каждый магнит ориентирован случайным образом. Во время проведения эксперимента ЯМР образец помещается во внешнее магнитное поле В 0 , что заставляет стержневые магниты с низкой энергией выравниваться в направлении B 0 , а с высокой - в противоположном. При этом происходит изменение ориентации спина магнитов. Чтобы понять эту довольно абстрактную концепцию, следует рассмотреть энергетические уровни ядра во время эксперимента ЯМР.

Энергетические уровни

Для переворота спина необходимо целое число квантов. Для любого m существует 2m + 1 энергетических уровней. Для ядра со спином 1/2 их только 2 - низкий, занимаемый спинами, выровненными с B 0 , и высокий, занятый спинами, направленными против В 0 . Каждый энергетический уровень определяется выражением Е = -mℏγВ 0 , где m - магнитное квантовое число, в этом случае +/- 1/2. Энергетические уровни для m > 1/2, известные как квадрупольные ядра, более сложны.

Разность энергий уровней равна: ΔE = ℏγВ 0 , где ℏ - постоянная Планка.

Как видно, сила магнитного поля имеет большое значение, поскольку при ее отсутствии уровни вырождаются.

Энергопереходы

Для возникновения ядерного магнитного резонанса должен произойти переворот спина между уровнями энергии. Разность энергий двух состояний соответствует энергии электромагнитного излучения, которая заставляет ядра изменять свои энергетические уровни. Для большинства ЯМР-спектрометров В 0 имеет порядок 1 Тесла (Т ), а γ - 10 7 . Следовательно, требуемое электромагнитное излучение имеет порядок 10 7 Гц. Энергия фотона представлена ​​формулой Е = hν. Поэтому частота, необходимая для поглощения, равна: ν= γВ 0 /2π.

Ядерное экранирование

Физика ЯМР основана на концепции ядерного экранирования, которое позволяет определять структуру вещества. Каждый атом окружен электронами, вращающимися вокруг ядра и действующими на его магнитное поле, что в свою очередь вызывает небольшие изменения энергетических уровней. Это и называется экранированием. Ядра, которые испытывают различные магнитные поля, связанные с локальными электронными взаимодействиями, называют неэквивалентными. Изменение энергетических уровней для переворота спина требует другой частоты, что создает новый пик в спектре ЯМР. Экранирование позволяет осуществлять структурное определение молекул путем анализа сигнала ЯМР с помощью преобразования Фурье. Результатом является спектр, состоящий из набора пиков, каждый из которых соответствует отдельной химической среде. Площадь пика прямо пропорциональна числу ядер. Подробная информация о структуре извлекается путем ЯМР-взаимодействий , по-разному изменяющих спектр.

Релаксация

Релаксация относится к явлению возврата ядер в их термодинамически стабильные после возбуждения до более высоких энергетических уровней состояния. При этом высвобождается энергия, поглощенная при переходе с более низкого уровня к более высокому. Это довольно сложный процесс, проходящий в разных временных рамках. Двумя наиболее распространенными типами релаксации являются спин-решеточная и спин-спиновая.

Чтобы понять релаксацию, необходимо рассмотреть весь образец. Если ядра поместить во внешнее магнитное поле, они создадут объемную намагниченность вдоль оси Z. Их спины также когерентны и позволяют обнаружить сигнал. ЯМР сдвигает объемную намагниченность от оси Z в плоскость XY, где она и проявляется.

Спин-решеточная релаксация характеризуется временем T 1 , необходимым для восстановления 37 % объемной намагниченности вдоль оси Z. Чем эффективнее процесс релаксации, тем меньше T 1 . В твердых телах, поскольку движение между молекулами ограничено, время релаксации велико. Измерения обычно проводятся импульсными методами.

Спин-спиновая релаксация характеризуется временем потери взаимной когерентности T 2 . Оно может быть меньшим или равным T 1 .

Ядерный магнитный резонанс и его применение

Две основные области, в которых ЯМР оказался чрезвычайно важным, - это медицина и химия, однако каждый день разрабатываются новые сферы его применения.

Ядерная магнитно-резонансная томография, более известная как магнитно-резонансная (МРТ), является важным медицинским диагностическим инструментом , используемым для изучения функций и структуры человеческого тела. Она позволяет получить подробные изображения любого органа, особенно мягких тканей, во всех возможных плоскостях. Используется в областях сердечно-сосудистой, неврологической, костно-мышечной и онкологической визуализации. В отличие от альтернативной компьютерной, магнитно-резонансная томография не использует ионизирующее излучение, следовательно совершенно безопасна.

МРТ позволяет выявить незначительные изменения, происходящие со временем. ЯМР-интроскопию можно использовать для выявления структурных аномалий, возникающих в ходе болезни, а также того, как они влияют на последующее развитие и как их прогрессирование коррелирует с психическими и эмоциональными аспектами расстройства. Поскольку МРТ плохо визуализирует кость, получаются превосходные изображения внутричерепного и внутрипозвоночного содержимого.

Принципы использования ядерно-магнитного резонанса в диагностике

Во время процедуры МРТ пациент лежит внутри массивного полого цилиндрического магнита и подвергается воздействию мощного устойчивого магнитного поля. Разные атомы в сканируемой части тела резонируют на разных частотах поля. МРТ используется прежде всего для обнаружения колебаний атомов водорода, которые содержат вращающееся протонное ядро, обладающее небольшим магнитным полем. При МРТ фоновое магнитное поле выстраивает в линию все атомы водорода в ткани. Второе магнитное поле, ориентация которого отличается от фонового, включается и выключается много раз в секунду. На определенной частоте атомы резонируют и выстраиваются в линию со вторым полем. Когда оно выключается, атомы возвращаются обратно, выравниваясь с фоном. При этом возникает сигнал, который можно принять и преобразовать в изображение.

Ткани с большим количеством водорода, который присутствует в организме человека в составе воды, создает яркое изображение, а с малым его содержанием или отсутствием (например, кости) выглядят темными . Яркость МРТ усиливается благодаря контрастному веществу, такому как гадодиамид , который пациенты принимают перед процедурой. Хотя эти агенты могут улучшить качество изображений, по своей чувствительности процедура остается относительно ограниченной. Разрабатываются методы повышения чувствительности МРТ. Наиболее перспективным является использование параводорода - формы водорода с уникальными свойствами молекулярного спина, который очень чувствителен к магнитным полям.

Улучшение характеристик магнитных полей, используемых в МРТ, привело к разработке высокочувствительных методов визуализации, таких как диффузионная и функциональная МРТ, которые предназначены для отображения очень специфических свойств тканей. Кроме того, уникальная форма МРТ-технологии , называемая магнитно-резонансной ангиографией, используется для получения изображения движения крови. Она позволяет визуализировать артерии и вены без необходимости в иглах, катетерах или контрастных агентах. Как и в случае с МРТ, эти методы помогли революционизировать биомедицинские исследования и диагностику.

Передовые компьютерные технологии позволили радиологам из цифровых сечений, полученных сканерами МРТ, создавать трехмерные голограммы, служащие для определения точной локализации повреждений. Томография особенно ценна при обследовании головного и спинного мозга, а также органов таза, таких как мочевой пузырь, и губчатой кости. Метод позволяет быстро и ясно точно определить степень поражения опухолью и оценить потенциальный ущерб от инсульта, позволяя врачам своевременно назначать надлежащее лечение. МРТ в значительной степени вытеснила артрографию , необходимость вводить контрастное вещество в сустав для визуализации хряща или повреждение связок, а также миелографию , инъекцию контрастного вещества в позвоночный канал для визуализации нарушений спинного мозга или межпозвонкового диска.

Применение в химии

Во многих лабораториях сегодня ядерный магнитный резонанс используется для определения структур важных химических и биологических соединений. В спектрах ЯМР различные пики дают информацию о конкретном химическом окружении и связях между атомами. Наиболее распространенными изотопами, используемыми для обнаружения сигналов магнитного резонанса, являются 1 H и 13 C, но подходит и множество других, таких как 2 H, 3 He , 15 N, 19 F и т. д.

Современная ЯМР-спектроскопия нашла широкое применение в биомолекулярных системах и играет важную роль в структурной биологии. С развитием методологии и инструментов ЯМР стал одним из самых мощных и универсальных спектроскопических методов анализа биомакромолекул, который позволяет характеризовать их и их комплексы размерами до 100 кДа . Совместно с рентгеновской кристаллографией это одна из двух ведущих технологий определения их структуры на атомном уровне. Кроме того, ЯМР предоставляет уникальную и важную информацию о функциях белка, которая играет решающую роль в разработке лекарственных препаратов. Некоторые из применений ЯМР-спектроскопии приведены ниже.

  • Это единственный метод определения атомной структуры биомакромолекул в водных растворах в близких к физиологическим условиях или имитирующих мембрану средах.
  • Молекулярная динамика. Это наиболее мощный метод количественного определения динамических свойств биомакромолекул .
  • Сворачивание белка. ЯМР-спектроскопия является наиболее мощным инструментом для определения остаточных структур развернутых белков и посредников сворачивания.
  • Состояние ионизации. Метод эффективен при определении химических свойств функциональных групп в биомакромолекулах, таких как ионизационные состояния ионизируемых групп активных участков ферментов .
  • Ядерный магнитный резонанс позволяет изучить слабые функциональные взаимодействия между макробиомолекулами (например, с константами диссоциации в микромолярном и миллимолярном диапазонах), что невозможно сделать с помощью других методов.
  • Гидратация белков. ЯМР является инструментом для обнаружения внутренней воды и ее взаимодействия с биомакромолекулами.
  • Это уникальный метод прямого обнаружения взаимодействия водородных связей .
  • Скрининг и разработка лекарств. В частности, метод ядерного магнитного резонанса особенно полезен при идентификации препаратов и определении конформаций соединений, связанных с ферментами, рецепторами и другими белками.
  • Нативный мембранный белок. Твердотельный ЯМР обладает потенциалом определения атомных структур доменов мембранных белков в среде нативной мембраны, в том числе со связанными лигандами.
  • Метаболический анализ.
  • Химический анализ. Химическая идентификация и конформационный анализ синтетических и природных химических веществ.
  • Материаловедение. Мощный инструмент в исследовании химии и физики полимеров.

Другие применения

Ядерный магнитный резонанс и его применение не ограничены медициной и химией. Метод оказался очень полезным и в других областях, таких как климатические испытания, нефтяная промышленность, управление процессами, ЯМР поля Земли и магнитометры. Неразрушающий контроль позволяет сэкономить на дорогих биологических образцах, которые могут быть использованы повторно, если необходимо провести больше испытаний. Ядерно-магнитный резонанс в геологии используется для измерения пористости пород и проницаемости подземных жидкостей. Магнитометры применяются для измерения различных магнитных полей.

Все элементарные частицы, то есть все, из чего мы состоим, являются маленькими магнитиками - это и протон, и нейтрон, и электрон. Таким образом, ядра, сложенные из протонов и нейтронов, также могут иметь магнитный момент.

1. Характеристика магнитного момента ядра

Природа магнитного момента квантовая. Но если попытаться проиллюстрировать ее в более понятном классическом выражении, поведение ядра похоже на поведение маленького вращающегося магнитика. Таким образом, если у нас нет внешнего магнитного поля, то такой магнит может быть ориентирован в любом направлении. Как только мы прикладываем внешнее магнитное поле, то ядро, обладающее магнитным моментом, как любой магнит, начинает чувствовать это магнитное поле, и если его спиновое число равно ½, то появляются два направления его преимущественной ориентации: по направлению и против направления магнитного поля. Эти два состояния различаются по энергии, и ядро, например протон, может переходить из одного состояния в другое. Такое изменение его ориентации относительно внешнего магнитного поля сопровождается поглощением или выделением кванта энергии.

Энергия эта очень мала. Квант энергии лежит в области радиочастотных излучений. И именно эта малость энергии - одно из неприятных свойств метода ядерного магнитного резонанса, поскольку она определяет близость заселенностей нижнего и верхнего уровней. Но тем не менее, если мы посмотрим на ансамбль таких ядер, то есть на вещество, которое мы поместили в магнитное поле, появляется достаточно большое количество магнитных моментов, направленных вниз и вверх, и между ними возникают переходы. Таким образом, мы можем регистрировать эти переходы и измерять свойства, связанные с ними.

2. Свойства магнитного момента ядра

Поскольку квант энергии при переходе с одного уровня на другой зависит только от магнитных свойств исследуемого ядра и от величины внешнего магнитного поля, то так называемая частота магнитной прецессии, или ларморова частота, является фактором этих двух составляющих.

Однако на самом деле магнитное поле, которое окружает то или иное ядро, неравно тому магнитному полю, которое мы приложили к нему, поместив изучаемый объект в магнит нашего спектрометра. Кроме внешнего магнитного поля нужно учесть и локальные магнитные поля, которые наводятся, например, движением электронов вокруг ядер, действием соседних ядер, таких же магнитов, способных индуцировать локальные магнитные поля, и тому подобное. Таким образом, каждое ядро, находящееся в разной части молекулы, имеет совершенно разное эффективное магнитное поле, которое окружает это ядро. В результате мы можем регистрировать не одиночный резонанс, а их набор, то есть спектр ядерного магнитного резонанса.

Относительная резонансная частота выражается, как правило, в миллионных долях по отношению к величине внешнего магнитного поля. Этот параметр является стабильной величиной, не зависящей от значения внешнего магнитного поля, но определяемой электронными свойствами изучаемой молекулы.

Итак, если мы рассматриваем какое-то химическое соединение: в разных положениях находящиеся, например, протоны чувствуют совершенно разное магнитное поле, то таким образом можно идентифицировать, скажем, сигнал протона ароматического остатка, сигнал протона какой-нибудь группы –CH3 и так далее. И сама по себе эта информация чрезвычайно важна со структурной точки зрения.

3. Взаимодействие ядер, обладающих магнитным моментом

Из-за того, что магнитные моменты взаимодействуют друг с другом, появляется еще один пласт информации, которую мы можем извлекать. Это информация, которая связана с взаимодействием двух различных ядер друг с другом. Если, например, одно ядро взаимодействует с другим посредством системы электронов, участвующих в образовании химических связей, то это называется непрямым, или спин-спиновым, взаимодействием. Величины спин-спинового взаимодействия ядер чрезвычайно чувствительны к геометрии молекулы, к ее электронным свойствам, например к электронной плотности, окружающей те или иные ядра. Таким образом, мы можем получить ряд очень важных структурных параметров уже из величины взаимодействия.

Кроме того, два ядра, обладающих магнитным моментом, могут взаимодействовать друг с другом просто через пространство. Это называется «прямое диполь-дипольное взаимодействие», и, опять же, такого сорта взаимодействия чрезвычайно структурно информативны. Например, вектор взаимодействия двух ядер может дать нам информацию о пространственной близости ядер, об ориентации пары взаимодействующих ядер по отношению к внешнему магнитному полю.

Таким образом, если мы измеряем спектр ядерного магнитного резонанса некоего соединения, мы можем получить очень подробную информацию о его строении. Если мы, например, способны измерить межъядерное расстояние - а это можно сделать, определив свойства, связанные с диполь-дипольным взаимодействием ядер, ведь его величина определяется этим межъядерным расстоянием, - то ЯМР фактически становится структурным методом.

4. История открытия метода ЯМР

Спектроскопия ЯМР как метод изучения свойств молекул появилась в середине 40-х годов XX века и за очень короткое время - уже к середине 1950-х годов - стала одним из ключевых методов изучения органических соединений.

Но реальными первооткрывателями метода ЯМР в жидкостях являются Блох и Парселл - американские ученые, получившие Нобелевскую премию в 1950-е годы за открытие, которое они сделали в 1945–1946 годах. Следует при этом отметить, что наш соотечественник Евгений Константинович Завойский в 1944 году опубликовал работу по детектированию магнитного резонанса электрона. Электрон, как было сказано выше, тоже обладает магнитным моментом, причем величина этого магнитного момента еще больше магнитного момента ядер. Физические принципы метода ядерного магнитного резонанса и метода электронного парамагнитного резонанса очень схожи.

Но, к сожалению, по тем или иным причинам - причинам скорее политического толка - работа Евгения Константиновича Завойского не была отмечена Нобелевской премией, хотя, безусловно, он должен был войти в число тех людей, кто получил премию за открытие явления магнитного резонанса.

Чуть раньше Исаак Раби получил Нобелевскую премию за работы, проведенные им в 1930-х годах XX века, за открытие магнитных свойств ядер в газовых пучках. И фактически эти работы послужили импульсом для создания методов ЯМР в жидкости и твердом теле.

Нобелевские премии часто давали за открытия, связанные с методом ЯМР. Нельзя, например, не отметить премию, присужденную Ричарду Эрнсту, который создал базовую методологию спектроскопии ЯМР, например, импульсную фурье-спектроскопию ЯМР, методы двумерной спектроскопии ЯМР; а также такого ученого, как Курт Вютрих, швейцарского коллегу Ричарда Эрнста, который создал методологию изучения строения белковых молекул с помощью ядерного магнитного резонанса.

5. Практическое применение метода ЯМР

Метод ЯМР после его создания начал активно использоваться для изучения органических соединений. Но магнитные моменты присущи не только тем ядрам, которые входят в состав , то есть протону, углероду или его изотопу C-13 и азоту или его изотопу N-15. Фактически вся периодическая система в той или иной степени охвачена теми или иными стабильными изотопами ядер, имеющих магнитные моменты. Этот метод совершенно не связан ни с какими радиоактивными свойствами ядер - только с их магнитными свойствами. Почти каждый элемент периодической системы имеет те или иные изотопы, обладающие удобными для ядерного магнитного резонанса свойствами.

И вскоре после освоения методик ЯМР для простых органических соединений он начал активно применяться для изучения различных неорганических соединений. В настоящее время метод ядерного магнитного резонанса является, по большинству оценок, наиболее мощным физическим методом изучения соединений самой разной природы.

ЯМР или по-английски NMR imaging– это сокращение от словосочетания «ядерный магнитный резонанс». Такой способ исследования вошел в медицинскую практику в 80-х годах прошлого века. Он отличается от рентгеновской томографии. Излучение, используемое в ЯМР, включает радиоволновой диапазон с длиной волны от 1 до 300 м. По аналогии с КТ ядерно-магнитная томография использует автоматическое управление компьютерным сканированием с обработкой послойного изображения структуры внутренних органов.

В чем суть ЯМРТ


В основе ЯМР используются сильные магнитные поля, а также радиоволны, которые позволяют сформировать изображение тела человека из отдельных изображений (сканов). Такая методика необходима для экстренной помощи пациентам с травмами и повреждением мозга, а также для плановой проверки. ЯМРТ называется избирательное поглощение электромагнитных волн веществом (телом человека), которое находится в магнитном поле. Это становится возможным при наличии ядер с ненулевым магнитным моментом. Сначала происходит поглощение радиоволн, затем происходит испускание радиоволн ядрами и они переходят на низкие энергетические уровни. Оба процесса можно зафиксировать при изучении и поглощении ядер. При ЯМР создается неоднородное магнитное поле. Нужно лишь настроить антенну-передатчик и приемник ЯМР-томографа на строго определенный участок тканей или органов и снимать показания с точек, меняя частоту приема волны.

При обработке информации от просканированных точек получаются картинки всех органов и систем в различных плоскостях, в срезе, формируется трехмерное изображение тканей и органов с высоким разрешением. Технология магнитно – ядерной томографии очень сложная, в ее основу положен принцип резонансного поглощения электромагнитных волн атомами. Человек помещается в аппарат с сильным магнитным полем. Молекулы там разворачиваются по направлению магнитного поля. Затем проводится сканирование электроволной, изменение молекул сначала фиксируется на особой матрице, а затем передается в компьютер и проводится обработка всех данных.

Области применения ЯМРТ

ЯМР томография имеет достаточно широкий спектр применения, поэтому его гораздо чаще используют в качестве альтернативы компьютерной томографии. Список заболеваний, которые можно обнаружить при помощи ЯМР очень объемный.

  • Головной мозг.

Чаще всего такое исследование применяется для сканирования головного мозга при травмах, опухолях, деменции, эпилепсии, проблемах с сосудами головного мозга.

  • Сердечно-сосудистая система.

При диагностике сердца и сосудов ЯМР дополняет такие методы, как ангиография и КТ.
ЯМРТ позволяет выявить кардиомиопатию, врожденный порок сердца, сосудистые изменения, ишемию миокарда, дистрофию и опухоли в области сердца, сосудов.

  • Опорно-двигательная система.

Широко применяется ЯМР томография и при диагностике проблем с опорно-двигательным аппаратом. При таком методе диагностики очень хорошо дифференцируются связки, сухожилия и костные структуры.

  • Внутренние органы.

При исследовании ЖКТ и печени с помощью ядерно-магнитно-резонансной томографии можно получить полноценную информацию о селезенке, почках, печени, поджелудочной железе. Если дополнительно ввести контрастное вещество, то появляется возможность отследить функциональную способность этих органов и их сосудистую систему. А дополнительные компьютерные программы позволяют сформировать образы кишечника, пищевода, желчных путей, бронхов.

Ядерная магнитно-резонансная томография и МРТ: есть ли разница

Иногда можно запутаться в названиях МРТ и ЯМР. Если ли отличие между этими двумя процедурами? Можно однозначно ответить, что нет.
Первоначально, на момент своего открытия магнитно-резонансной томографии в ее названии имелось еще одно слово «ядерная», которое со временем исчезло, осталась только аббревиатура МРТ.


Ядерная магнитно-резонансная томография представляет собой подобие рентгеновского аппарата, однако, принцип действия и возможности у нее несколько другие. МРТ помогает получить визуальную картинку головного и спинного мозга, других органов с мягкими тканями. С помощью томографии есть возможность измерить скорость кровотока, течения ликвора и спинномозговой жидкости. Также возможно рассмотреть, как активируется тот или иной участок коры головного мозга в зависимости от деятельности человека. Врач при проведении исследования видит объемное изображение, которое позволяет ему ориентироваться в оценке состояния человека.

Существует несколько способов исследования: ангиография, перфузия, диффузия, спектроскопия. Ядерная магнитно-резонансная томография является одной из самых лучших методик исследования, так как она позволяет получить трехмерное изображение состояния органов и тканей, а значит, диагноз будет установлен более точно и лечение будет выбрано правильное. ЯМР исследование внутренних органов человека представляет собой именно образы, а не реальные ткани. Образы появляются на фоточувствительной пленке, когда поглощаются рентгеновские лучи при получении рентгеновского снимка.

Основные плюсы ЯМР-томографии

Преимущества томографии ЯМР по сравнению с другими методами исследования многогранны и значительны.

Минусы ЯМР-томографии

Но конечно и такой метод не лишен своих недостатков.

  • Большая энергозатрата. Работа камеры требует большого количества электроэнергии и дорогих технологий для нормальной сверхпроводимости. Но магниты с большой мощностью не оказывают отрицательного влияния на здоровье человека.
  • Длительность процесса. Ядерная магнитно-резонансная томография является менее чувствительным методом по сравнению с рентгеном. Поэтому требуется большее время для просвечивания. К тому же искажение картинки может происходить из-за дыхательных движений, что искажает данные при проведении исследований легких и сердца.
  • При наличии такого заболевания, как клаустрофобия, является противопоказанием для исследования при помощи ЯМРТ. Также нельзя проводит диагностику при помощи ЯМР-томографии, если имеются крупные металлические имплантаты, кардиостимуляторы, искусственные водители ритма. При беременности диагностику проводят только в исключительных случаях.

Каждый крошечный объект человеческого тела может быть исследован при помощи ЯМР-томографии. Только в некоторых случаях следует включать распределение концентрации химических элементов в организме. Для того чтобы измерения становились более чувствительными, следует накапливать и суммировать довольно большое количество сигналов. В таком случае получается четкое изображение высокого качества, которое адекватно передает реальность. С этим связана и длительность пребывания человека в камере для проведения ЯМР-томографии. Придется неподвижно пролежать довольно долго.

В завершение можно сказать, что ядерная магнитно-резонансная томография является довольно безопасным и абсолютно безболезненным методом диагностики, который позволяет полностью избежать воздействия рентгеновских лучей. Компьютерные программы позволяют обрабатывать получившиеся сканы с формированием виртуальных изображений. Границы ЯМР поистине безграничны.

Уже сейчас такой способ диагностики является стимулом для ее стремительного развития и широкого применения в медицине. Метод отличается своей малой вредностью для здоровья человека, но при этом позволяет тщательно исследовать строение органов, как здорового человека, так и при имеющихся заболеваниях.